При построении математических моделей движения атмосферных объемов, включающих в себя мельчайшие твердые или жидкие частицы, вводится предположение [121] о том, что их наличие не оказывает сколько-нибудь заметного влияния на характер такого движения. Иными словами, предполагается, что примесь капель жидкости или аэрозольных дымовых частиц в воздухе является консервативной и химически пассивной.
Что касается дымовых аэрозолей, то такое предположение является весьма оправданным и подтверждается многочисленными экспериментальными данными. Водяной пар в воздухе при отсутствии фазовых переходов является [121, 129, 130] консервативной скалярной примесью.
Как известно [121], любая консервативная субстанция, смешивающаяся с движущейся жидкостью, переносится относительно системы координат, связанной со средним ее движением, путем турбулентного и молекулярного обмена. Общий поток массы выражается в виде
В соответствии с законом Фика
где kv — коэффициент молекулярной диффузии рассматриваемой физической субстанции (водяного пара или дыма) в воздухе; pv — ее плотность.
Уравнение сохранения консервативной пассивной примеси в предположении постоянства pv и kv по пространству имеет вид [121]
где q — концентрация примеси.
Отметим, что это уравнение имеет весьма общий вид, и им можно пользоваться для определения изменения любой консервативной и пассивной примеси или любого свойства воздуха, заменив q на концентрацию, выраженную отношением массы примеси к единичному объему общей массы воздуха и понимая под ки коэффициент молекулярной диффузии этой примеси.
Записанное выше уравнение диффузии можно решить, выбрав подходящие граничные условия и зная распределение поля скорости. Граничные условия задаются трех типов, а именно на поверхности z = 0 задается либо значение q, либо поток рассматриваемой примеси, либо поток примеси выражается через другие компоненты теплового баланса.
К сожалению, уравнение (4.26) не находит непосредственного применения в практических задачах, так как реальные потоки имеют турбулентный характер. Это означает, что в действительности невозможно определить скорость переноса и концентрации примесей в любой заданной точке пространства и времени, а можно найти только их статистические характеристики.
Для этого рассматривают осредненные величины, и в соответствии с общепринятым подходом, предложенным Рейнольдсом, зависимые переменные представляют в виде сумм не возмущенных величин и возмущений:
Применяя затем обычный метод осреднения по времени с соответствующим периодом осреднения и используя уравнение неразрывности, из уравнения (4.26) получается соотношение для нахождения
Члены в левой части этого уравнения представляют скорость изменения средней массовой доли вещества примеси, перемещающейся с осредненной скоростью движения воздуха. Ковариации пульсаций в правой части уравнения можно назвать турбулентными потоками по аналогии с напряжениями Рейнольдса. Они являются компонентами диффузионного потока, обусловленного турбулентным движением. Последний член представляет перенос средней субстанции за счет молекулярной диффузии.
Это уравнение должно быть дополнено уравнениями неразрывности, количества движения и энергии в терминах средней скорости движения несжимаемой жидкости. Вид этих уравнений для пассивных и консервативных примесей общепринятый и поэтому здесь не приводится.
Записанные таким образом уравнения сохранения имеют незамкнутый вид, и поэтому их решение представляет большую проблему. Уравнения для моментов низших порядков (для осредненных величин) содержат потоки, обусловленные пульсациями метеорологических элементов и содержат моменты более высокого порядка. Таким образом, любой конечный набор уравнений для моментов турбулентных флуктуаций всегда включает больше неизвестных, чем число уравнений. Это известная проблема замыкания присуща уравнениям турбулентного движения, основанным на приближениях Рейнольдса. Она является результатом нелинейности исходных уравнений гидродинамики.
Упрощение этой проблемы достигается несколькими подходами. Во-первых, путем выделения в атмосфере вблизи подстилающей поверхности особого пограничного слоя, в котором вертикальные градиенты значительно больше горизонтальных. Во-вторых, путем использования принципов подобия и полуэмпирической теории турбулентности, выражая моменты второго и более высоких порядков через осредненные переменные и моменты более низких порядков.
В качестве примера использования инженерного подхода для решения задачи распространения консервативных пассивных примесей в атмосфере приведем математическую модель атмосферной диффузии примеси при тумане. Расчет распространения примеси от источников при тумане основывается на решении уравнения турбулентной диффузии, записанном в виде [129]:
Здесь u — скорость ветра; q — концентрация примеси; Ку — горизонтальная составляющая коэффициента обмена; а' — показатель степени поглощения примеси водяными каплями (вне тумана а' — 0).