Читаем Прикладное программное обеспечение: системы автоматической обработки текстов полностью

Прикладное программное обеспечение: системы автоматической обработки текстов

Учебное пособие знакомит читателей с одной из наиболее интересных и перспективных задач прикладного программирования - задачей автоматической обработки тестов на естественном языке. Рассмитриваются рациональные сферы применения систме автоматической обработки текстов , проблемы их линвистиеского обеспечения. Для студентов 2 курса факультета ВМК МГУ в поддержку обязательного лекционного курса "Прикладное программное обеспчение". Авторы пособия благодарят Владимира Геннадиевича Абрамова и Валерия Ивановича Родина за ценные советы и замечания. Рецензенты: проф. Р.Л. Смелянский, доц. Л.С. Корухова. Печатается по решению Редакционно-издательского совета факультета вычислительной математики и кибернетики МГУ им. М.В. Ломоносова.

И. Н. Полякова , Ирина Николаевна Полякова , Михаил Георгиевич Мальковский , Татьяна Юрьевна Грацианова

ОС и Сети, интернет / Языкознание / Интернет / Образование и наука / Книги по IT18+
<p>Михаил Георгиевич Мальковский, Татьяна Юрьевна Грацианова, И. Н. Полякова</p><empty-line></empty-line><p>Прикладное программное обеспечение: системы автоматической обработки текстов</p><p>1. Сферы применения систем автоматической обработки текстов</p>

Системы автоматической обработки текста (т.е. переработки одного вида текста в памяти ЭВМ в другой) по выполняемым функциям (входной и выходной информации) можно классифицировать следующим образом:

Язык входного текста

Язык выходного текста

1

Естественный-1

Естественный-2

2

Искусственный

Естественный

3

Естественный

Искусственный / Естественный

4

Естественный

Естественный + { Искусственный}

К системам первого типа относятся программы машинного перевода, получающие текст на некотором естественном языке и перерабатывающие его в текст на другом естественном языке. Второй тип - системы генерации (синтеза) текстов по некоторому формальному описанию. Системы третьего типа, наоборот, перерабатывают текст на естественном языке в текст на искусственном (индексирование, извлечение смыслового содержания) или в другой текст на естественном языке (реферирование). К последнему классу отнесем программы, занимающиеся проверкой текста, написанного на естественном языке. Они в результате своей работы либо исправляют входной текст автоматически, либо формируют некоторый протокол замечаний.

Естественный язык - сложная, многоплановая система, с множеством правил, внутренних связей, имеющая отношение ко всем аспектам деятельности человека. Точность и правильность работы программ определяется глубиной анализа. Достаточно глубокий анализ пока достигается только для определенных узких предметных областей (из-за специфичности подъязыка такой области: в каждой области свои термины, специфические семантические отношения и т.п.).

Для создания систем, работающих со всем естественным языком без потери глубины анализа, в настоящий момент не хватает либо технических возможностей (быстродействия, памяти), либо теоретической базы (например, пока нет даже единой схемы достаточно полного, глубокого и непротиворечивого описания семантики естественного языка). Однако в коммерческих системах, ввиду того, что предназначаются они для большого количества пользователей, разных предметных областей, принята концепция поверхностного анализа, к тому же и производится такой анализ значительно быстрее. Дальнейшее продвижение вперед, использование естественного языка в практических областях невозможно без оснащения этих систем обширными и глубокими (с точки зрения охвата различных явлений языка) описаниями и моделями, созданными лингвистами-профессионалами.

Эта тенденция прогнозируется многими исследователями и прослеживается на примере развития АОТ-систем, уже в наши дни представляющих коммерческий интерес и использующихся при решении следующих прикладных задач:

1. Machine Translation and Translation Aids - машинный перевод;

2. Text Generation - генерация текста;

3. Localization and Internationalization - локализация и интернационализация;

4. Controlled Language - работа на ограниченном языке;

5. Word Processing and Spelling Correction - создание текстовых документов (ввод, редактирование, исправление ошибок)

6. Information Retrieval - информационный поиск и связанные с ним задачи.

Отметим, что это деление несколько условное, и в реальных системах часто встречается объединение функций. Так, для машинного перевода требуется генерация текста, а при исправлении ошибок приходится заниматься поиском вариантов словоформы и т.д.

<p>1.1. Машинный перевод</p>

Исторически машинный перевод является первой попыткой использования компьютеров для решения невычислительных задач (знаменитый Джорджтаунский эксперимент в США в 1954 г.; работы по машинному переводу в СССР, начавшиеся в 1954 г.). Развитие электронной техники, рост объема памяти и производительности компьютеров создавали иллюзию быстрого решения этой задачи. Идея захватила воображение ученых и администраторов. Практическая цель была простой: загрузить в память компьютера максимально возможный словарь и с его помощью из иноязычных текстов получать текст на родном языке в удобочитаемом виде. Однако первоначальная эйфория по поводу того, что столь трудоемкую работу можно поручить ЭВМ, сменилась разочарованием в связи с абсолютной непригодностью получаемых текстов. Приведем в качестве примера результаты работы одной из современных коммерческих систем перевода. Предложим ей перевести народное английское стихотворение, известное нам в переводе "Робин-Бобин" (текст этот очень простой, московские дети изучают его в начальной школе):

Перейти на страницу:

Похожие книги

Веб-аналитика: анализ информации о посетителях веб-сайтов
Веб-аналитика: анализ информации о посетителях веб-сайтов

Компании в веб-пространстве тратят колоссальные средства на веб-аналитику и оптимизацию своих веб-сайтов, которые, в свою очередь, приносят миллиарды долларов дохода. Если вы аналитик или работаете с веб-данными, то эта книга ознакомит вас с новейшими точками зрения на веб-аналитику и то, как с ее помощью сделать вашу компанию весьма успешной в веб. Вы изучите инструментальные средства и показатели, которые можно использовать, но что важнее всего, эта книга ознакомит вас с новыми многочисленными точками зрения на веб-аналитику. Книга содержит много советов, приемов, идей и рекомендаций, которые вы можете взять на вооружение. Изучение веб-аналитики по этой уникальной книге позволит познакомиться с проблемами и возможностями ее современной концепции. Написанная практиком, книга охватывает определения и теории, проливающие свет на сложившееся мнение об этой области, а также предоставляет поэтапное руководство по реализации успешной стратегии веб-аналитики.Эксперт в данной области Авинаш Кошик в присущем ему блестящем стиле разоблачает укоренившиеся мифы и ведет по пути к получению действенного понимания аналитики. Узнайте, как отойти от анализа посещаемости сайта, почему основное внимание следует уделять качественным данным, каковы методы обретения лучшего понимания, которое поможет выработать мировоззрение, ориентированное на мнение клиента, без необходимости жертвовать интересами компании.- Изучите все преимущества и недостатки методов сбора данных.- Выясните, как перестать подсчитывать количество просмотренных страниц, получить лучшее представление о своих клиентах.- Научитесь определять ценность показателей при помощи тройной проверки "Ну и что".- Оптимизируйте организационную структуру и выберите правильный инструмент аналитики.- Изучите и примените передовые аналитические концепции, включая анализ SEM/PPC, сегментацию, показатели переходов и др.- Используйте решения с быстрым началом для блогов и электронной торговли, а также веб-сайтов мелкого бизнеса.- Изучите ключевые компоненты платформы экспериментирования и проверки.- Используйте анализ конкурентной разведки для обретения понимания и принятия мер.Здесь также находятся:- Десять шагов по улучшению веб-аналитики.- Семь шагов по созданию управляемой данными культуры в организации.- Шесть способов замера успеха блога.- Три секрета создания эффективной веб-аналитики.- Десять признаков великого веб-аналитика.

Авинаш Кошик

ОС и Сети, интернет