Это была изнуряющая процедура вытягивания численного выражения пая рядом соглашений через нескончаемые голосования [16]. Получаемый таким способом ряд производил впечатление сходящегося, однако после всех вычетов результат всегда оказывался отрицательным, что, разумеется, делало процедуру вытягивания невозможной.
Следующая теорема ведёт своё происхождение от радикального ряда в Арифметической Прогрессии: обозначим сам ряд как АР, а его сумму как (А.Р.)S. Было найдено, что функция (А.Р.)S. в различных формах участвует в вышеописанной процедуре. Тогда эксперимента решили преобразовать ()S. в какую-нибудь новую систему счисления, ведь первоначально, на протяжении длинного ряда... семестров, она существовала то в , то в системах счисления; отражённая в этих системах, наша функция предоставила нам много красивых выражений. Ныне она переведена в десятер
Произведя эти преобразования, процедуру разделения голосов повторили, но с же отрицательным результатом, после чего попытки были оставлены, хоть и не без надежды на будущих математиков, которым после привлечения некоторого количества прежде не определившихся постоянных, возведённых во вторую степень, возможно, удастся достичь положительного результата.
Давно было ясно, что основное препятствие к вычислению π — это присутствие J. В предыдущую эпоху развития математики ради устранения J не ограничились бы даже двумя секущими на прямоугольной площади, а произвели бы вдобавок отделение меньшей части — так называемая процедура устранения по произволу, которая ныне считается не вполне законной.
Ныне же одни предлагали исключить J на основании процедуры, состоящей из двух действий, одно из которых называется «получением достатка», а второе — «обращением остатка»; до её применения, однако, дело не дошло, поскольку J сделались нерешительными. Другие сторонники данного метода предпочли бы, чтобы J исключались [18]. Получившим классическое образование едва ли стоит напоминать, что есть аблятив от [19] и что это прекрасное и выразительное словцо знаменует желание устранить J через принудительное религиозное освидетельствование.
Затем предлагалось устранить J посредством [20]. Главное возражение по поводу этой процедуры заключалось в том, что в результате J возводится в неоправданно высокую степень, π в конечном счёте приобретает иррациональное значение [21].
Для оценки π предлагались и другие процедуры, которых нам нет нужды здесь рассматривать. Согласно одной из них, π должна считаться
Теперь мы приступаем к описанию новейшего метода, который увенчался блистательным и неожиданным успехом и который может быть назван как
Математики уже исследовали геометрическое место точек HPL и ввели эту функцию в свои расчёты. Это, однако, не способствовало получению столь чаемого численного значения — даже при переносе HPL в противоположную сторону уравнения с изменением знака. Процедура, которую мы собираемся описать, заключается главным образом в подстановке G на место и в приложении давления.
Пусть функция φ(HGL) [22] развёрнута в ряд; допустим, что его сумма есть абсолютно твёрдое тело, двигающееся фиксированной прямой. Буквой µ обозначим коэффициент морального обязательства, а буквой
Разложим теперь φ(HGL) по теореме [24]. Сама функция исчезает при исчезновении переменной:
φ(0) = 0
φ'(0) = (простая константа)
φ''(0) = 2·J
φ'''(0) = 2·3·H
φ''''(0) = 2·3·4·S
φ'''''(0) = 2·3·4·5·P
φ''''''(0) = 2·3·4·5·6·J
и далее представленные буквами величины повторяются в том же порядке.
Приведённое выше доказательство взято из учёного трактата под названием « » [25], где оно целую главу; вычисление π приведено в следующей главе. Автор пользуется случаем указать на несколько замечательных свойств, которыми обладает вышеприведённая и существование которых едва ли можно было подозревать заранее. Эта последовательность является функцией как µ, так и
Теперь мы имеем уравнение [26]:
φ(HGL) = 0 + C + J + H + S + P + J.
Такое суммирование дало минимальное значение пая; оно, однако, рассматривалось лишь как первое приближение, и вся процедура повторялась под давлением EAF, что дало для пая частное максимальное значение. Последовательно повышая EAF, в конце получили результат:
π = S = 500,00000.