Часто говорят о «поступи науки», однако наука не своими ногами ходит – вперед ее двигают люди, а прогресс наш – скорее эстафета, нежели марш. Более того, эстафета эта довольно странная, поскольку тот, кто хватает палочку, частенько срывается с места в направлении, какого предыдущий бегун не ожидал – и не одобрил бы. В точности так случилось со следующим великим визионером химии, получившим эстафету после блестящего забега Лавуазье.
Лавуазье прояснил значение простых веществ в химических реакциях и поддерживал количественный подход в описании их. Ныне мы знаем: чтобы по-настоящему разуметь химию и в особенности количественно оценивать химические реакции, необходимо понимать атом. Но Лавуазье презрел понятие атома. Не потому что был зашорен или недальновиден. Скорее, он противился идее мыслить в понятиях атомов исключительно из практических соображений.
Ученые строили догадки об атомах со времен Древней Греции, хотя иногда именовали их иначе – «корпускулами», «частицами материи» и др. И все же, поскольку атомы так малы, за почти двадцать столетий никто не задумывался над тем, как связать их с физически возможными наблюдениями и измерениями.
Чтобы примерно понять, насколько мал атом, вообразите, что мировой океан состоит из шариков размером с марбл. Теперь представьте, что все они уменьшились до размеров атома. Сколько места они теперь будут занимать? Меньше чайной ложки. И как тут надеяться увидеть взаимодействия чего-то настолько маленького?
Оказывается, надеяться можно запросто: это чудесное достижение – наблюдать за такими взаимодействиями – стало первым прорывом школьного учителя-квакера Джона Дальтона [Долтона] (1766–1844)[262]. Многие великие ученые в истории науки были людьми яркими, но Дальтон, сын бедного ткача, – не таков. Он был методичен во всем – от своих ученых занятий до ежедневных чаепитий в пять пополудни и последующих ужинов в девять, мясом с картошкой.
Дальтон известен своей книгой «Новая система химической философии» – подробнейшим трехчастным трактатом, который, что еще более ошеломительно, ученый экспериментально наполнил и написал исключительно в свое свободное время. Первая часть, изданная в 1810 году, когда ему было за сорок, – исполинский труд на 916 страниц. Из них лишь одна глава, страниц пять в лучшем случае, представляет эпохальную мысль, благодаря которой Дальтон известен нам и поныне: способ рассчитывать относительные массы атомов на основе измерений, которые можно произвести лабораторно. Такова интрига и сила научных идей – пять страниц могут отменить ошибочные представления двух тысячелетий.
Эта мысль, как часто бывает, пришла к Дальтону кружным путем, и, хотя дело было уже в XIX веке, она была вдохновлена человеком, рожденным в середине века XVII-го, – Ньютон дотянулся и до Дальтона.
Дальтону нравилось гулять, а в младые годы он жил в Камберленде, самой сырой части Англии, и там увлекся метеорологией. А еще он был юным гением и еще подростком изучал «Принципы» Ньютона. Это сочетание интересов оказалось поразительно плодотворным: оно привело Дальтона к изучению физических свойств газов – например, сырого воздуха камберлендской глубинки. Увлекшись Ньютоновой теорией корпускул, повторявшей, по сути, античные представления греков об атомах, но усовершенствованной Ньютоновыми представлениями о силе и движении, Дальтон постепенно заподозрил, что разная растворимость газов связана с различием в размерах их частиц, а это, в свою очередь, привело его к размышлениям о массах атомов.
Подход Дальтона основывался на представлении о том, что, если рассматривать только чистые вещества, они должны состоять из своих компонентов в точных и одинаковых пропорциях. К примеру, существует два разных оксида меди. Если изучить эти оксиды по отдельности, выяснится, что на каждый грамм поглощенного кислорода при получении одного оксида уходит четыре грамма меди, а на получение другого – восемь. Это означает, что во втором виде оксида с каждым атомом кислорода соединяется вдвое больше атомов меди.
Теперь допустим для простоты, что в первом случае каждый атом кислорода соединяется с одним атомом меди, а во втором – с двумя. Раз в первом случае оксид получается из четырех граммов меди на грамм кислорода, можно заключить, что атом меди в четыре раза больше по массе, чем атом кислорода. Это заключение, как выяснилось, верно, и такое рассуждение Дальтон применил для расчета относительных атомных масс всех известных элементов.
Поскольку Дальтон рассчитывал относительные массы, ему нужно было от чего-то отталкиваться, и он принял легчайший известный тогда элемент водород за единицу и массы всех остальных химических элементов рассчитывал в пропорции к нему.