Когда Нильс Бор учился в школе[358], ему рассказывали, как греки придумали натурфилософию, и что уравнения Исаака Ньютона, описывавшие отклик физических тел на воздействие силы тяготения, – первый громадный шаг к пониманию устройства мира, поскольку благодаря им ученые могут производить количественные оценки движения падающих и движущихся по орбите тел. Бора учили и тому, что незадолго до его рождения Максвелл добавил к трудам Ньютона теорию, как предметы взаимодействуют с электрическими и магнитными полями и генерируют их, – и таким образом довел мировоззрение Ньютона до его вершины.
Физики во времена юности Бора, казалось, располагали теорией и сил, и движения, включавшей в себя все взаимодействия, какие есть в природе и известные на ту пору. Бор, однако, не ведал вот чего: на рубеже веков, когда сам он поступил в Университет Копенгагена и принялся за свою научную работу, почти через двести лет все более поразительных успехов мировоззрение Ньютона готово было того и гляди рухнуть.
Как мы уже убедились, ньютонианство оказалось под сомнением, поскольку новая теория Максвелла хоть поначалу и позволила расширить Ньютоновы законы движения на множество других явлений, позднее оказалось, что излучение абсолютно черного тела и фотоэлектрический эффект, например, не укладываются в предсказания Ньютоновой (классической) физики. Однако прорывы в развитии теории, осуществленные Эйнштейном и Планком, стали возможны лишь благодаря техническим нововведениям, позволившим экспериментаторам исследовать физические процессы с участием атома. И именно этот поворот событий вдохновил Бора, поскольку он питал большое почтение – и располагал изрядным даром – к экспериментальной работе.
Годы, посвященные Бором его диссертации, несомненно, увлекательны – особенно тем, кому интересна экспериментальная физика. В те годы технические новшества вроде вакуумированных стеклянных трубок со встроенным в них источником тока – предшественников электронно-лучевых трубок, сиречь экранов старых телевизоров, привели ко множеству важных открытий. Например: открытие Вильгельмом Рентгеном [Вильхельмом Рёнтгеном] лучей, названных его именем (1895); открытие Томсоном электрона (1897); осознание физиком новозеландского происхождения Эрнестом Резерфордом [Разерфордом], что атомы некоторых химических элементов вроде урана или тория испускают загадочное излучение (1899–1903). Резерфорд (1871–1937) описал даже не одного, а целых трех обитателей этого зверинца загадочных лучей – альфа-, бета– и гамма-излучение. По его рассуждению, эти три излучения – ошметки, образующиеся после того, как атомы одного элемента самопроизвольно распадаются и образуют атомы другого элемента.
Открытия Томсона и Резерфорда оказались особенно сродни откровению, поскольку описывали атом и его составляющие, кои, как выяснилось, при помощи законов Ньютона ни описать, ни даже вместить в систему классической физики не получается. И потому эти новые наблюдения, как впоследствии станет ясно, потребовали совершенно нового подхода к физике.
И все же, пусть и теоретические, и экспериментальные успехи того времени кружили голову, первоначальный отклик физического сообщества на бо́льшую часть этих успехов свелся к следующему: примем охолонин и сделаем вид, что ничего этого на самом деле не происходит. И потому отмахнулись не только от кванта Планка и фотона Эйнштейна, но и от этих революционных экспериментов.
До 1905 года считавшие атом метафизической чепухой относились к разговорам об электронах, предполагаемых составляющих атома, примерно так же серьезно, как атеист относится к дискуссиям о том, мужчина Бог или женщина. Удивительнее же вот что: тем, кто все-таки верил в существование атомов, электроны не понравились – потому что электрон считался «частью» атома, а атом, по определению, – штука неделимая. До того фантасмагорическим казался электрон Томсона[359], что один знаменитый физик сказал ему, что принял все это за «розыгрыш».
Так же и с предположением Резерфорда о том, что атом одного элемента может распасться до атома другого, – все решили, что оно исходит от человека, отрастившего себе длинную бороду и облачившегося в мантию алхимика. В 1941 году ученые узнали[360], как превратить ртуть в золото – прямо-таки мечта алхимика, – бомбардируя ртуть нейтронами в ядерном реакторе. Но в 1903-м коллегам Резерфорда принять смелые заявления о трансмутации не хватило авантюрности. (При этом, как ни странно, на возню со светящимися радиоактивными цацками, которые им выдал Резерфорд, им авантюрности достало, и они тем самым получили дозу облучения от процесса, который, как они считали, и не происходит вовсе.)