Заковыристой темой причинности в квантовой вселенной не занимались вплоть до самого конца квантовой революции, и до этого мы еще доберемся. Но был и другой вопрос – из тех, что одновременно и философские, и практические, – он издавна сбивал с толку: атомы слишком малы[326], их не разглядеть и даже не измерить по одиночке – ученые до второй половины ХХ века даже «фотокарточку» молекулы-то не видали. И потому в веке XIX-м любая экспериментальная работа, связанная с атомами, сводилась лишь к описанию явлений, обусловленных поведением колоссального количества этих малюсеньких невидимых предметов. Имеет ли смысл вообще считать незримые предметы существующими в действительности?
Вопреки работе Дальтона, посвященной атому, мало кто из ученых так думал. Даже химики, применявшие понятие атома из-за того, что с ним делались понятнее явления, которые можно было наблюдать и измерять, склонны были рассматривать его просто как рабочую гипотезу: химические реакции протекают так, будто при этом происходит перетасовывание атомов, входящих в состав веществ. Другие считали атомы понятием скорее философским, нежели научным, и стремились отказаться от него вообще. Немецкий химик Вильгельм Фридрих Оствальд говорил: атомы – «гипотетические фигуры, не ведущие ни к каким доказуемым заключениям»[327].
Нерешительность эта объяснима: пути науки и философии за века разошлись в точности на том, должны ли представления о природе быть поддержаны экспериментом и наблюдением. Настаивая на проверяемости как критерии принятия какой бы то ни было гипотезы, ученые смогли отрясти старые убеждения либо как не проверяемые, либо, как случилось со многими теориями Аристотеля, неверными. Их место заняли математические законы, позволявшие получать точные количественные прогнозы исходов наблюдаемых процессов.
Существование атомов впрямую доказать было нельзя, однако гипотеза об их существовании приводила-таки к проверяемым на практике законам, и законы эти, как подтвердилось, верны – к примеру, представление об атоме можно применять при выводе математической взаимосвязи между температурой и давлением в газах. Что же об этом атоме думать вообще? Вот каков был мета-вопрос эпохи. Ответ оставался неясным, а потому бо́льшую часть XIX века атом существовал себе призрачным духом за плечами у физиков, неуловимостью, шептавшей им в уши тайны природы.
Вопрос об атоме получил в конце концов ответ настолько мощный, что ныне вопроса-то никакого и нет: мы знаем, что, если науке потребен прогресс, ей придется переместить фокус внимания за пределы прямого чувственного опыта. В начале XXI века наше принятие незримого мира зашло настолько далеко, что от открытия знаменитой «частицы Хиггса» [Хиггза] никто и не поморщился, хотя никто не только в глаза никакой частицы Хиггса не видывал, но и не наблюдал осязаемых результатов взаимодействия частиц Хиггса с каким-нибудь прибором, который мог бы сделать их зримыми косвенно, как флуоресцентный экран делает «зримыми» электроны, когда светится от их ударов.
Подтверждение существования частиц Хиггса – сугубо математическое, оно выводится из определенных численных экспериментальных данных. Эти данные, характеризующие радиоактивное излучение, были сняты с обломков более трехсот триллионов столкновений протонов друг с другом, а затем проанализированы статистически намного позднее самих событий с применением двух сотен вычислительных центров в трех десятках стран. Именно это имеет в виду физик, когда говорит: «Мы видели частицу Хиггса».
Подобное «наблюдение» Хиггсовых и других субатомных частиц сделало прежде незримый атом больше похожим на целую непустую вселенную, и в каждой капле воды – миллиарды миллиардов таких вселенных, крошечных миров не просто для нас незримых, а отделенных на несколько порядков от непосредственного наблюдения. Бросьте пытаться объяснить теорию бозона Хиггса физику XIX века – замучаетесь растолковывать, что вы имеете в виду, говоря, что «видели» бозон.