Читаем Превращение элементов полностью

И вот теперь Бойль, вслед за Ф.Бэконом и П.Гассенди, обратился к атомистике и предпринял первую попытку на её основе объяснить понятие «элемент». Элементами Бойль назвал «корпускулы первого рода» (с оговоркой можно соотнести с современным определением молекулы), которые сами состоят из более мелких частиц материи (им Бойль названия не дал, но совершенно очевидно, что это атомы). Все химические превращения Бойль объяснял соединением и разъединением корпускул-элементов (по какой причине — не ясно!), каждая из которых «может быть выделена в первоначальном виде». Такими «первоначальными» элементами для него были известные к тому времени металлы, в первую очередь, конечно, золото и серебро. О существовании других элементов он ничего определённого сказать не мог — его время ещё не располагало необходимым для такого вывода теоретическим и экспериментальным материалом. Ещё не было объективных оценок веществ с точки зрения их химической простоты или сложности. Да и самому Бойлю не дано было полностью освободиться от груза традиции. Его можно сравнить с человеком, вступившим на первую, самую нижнюю ступень крутой лестницы. Куда она приведёт — неизвестно, а вот на каком она основании покоится — видно хорошо. Основание — алхимическое представление об универсальной материи, из которой состоят все тела, и вытекающее из этого представления убеждение, что «один вид металла может быть превращён в другой».

Сторонники идеи трансмутации металлов могли быть спокойны: их возлюбленной идее возрождение атомистики пока ничем не угрожало. И Бойль, и его великий современник Ньютон, принявший участие в разработке корпускулярной теории, ставили под сомнение не идею, а её «вульгарное» обоснование. Они сделали первый, но достаточно большой шаг к очищению химии и от алхимической зауми, и от алхимических чудес.

XVII в. — это век торжествующей механики. Она бралась объяснять решительно всё — от движения планет до взаимодействия корпускул. «Части всех однородных твёрдых тел, вполне прикасающиеся друг к другу, сцепляются очень сильно вместе, — пишет в своей работе «Оптика» Ньютон. — Для объяснения этого некоторые изобрели атомы с крючками… другие — что частицы связаны согласованными движениями, т. е. относительным покоем между ними. Я бы, скорее, заключил из сцепления частиц о том, что они притягивают одна другую с некоторой силой, которая очень велика при непосредственном соприкосновении и производит на малых расстояниях вышеупомянутые химические действия…»

<p>Рождение и смерть флогистона</p>

Человек давно связал свою судьбу с огнём. Настолько тесно, что с точки зрения взаимоотношений человека и огня можно посмотреть даже на всю историю земной цивилизации. Огонь — это тепло в жилище. Это переход со звериного на человеческий способ питания. Это замена дубины и камня орудиями труда из металла…

Роль огня становилась всё значительнее и всё разнообразнее, а сам он долгое время оставался таинственным и непознанным. До поры до времени это не очень беспокоило, хотя, конечно, о его природе задумывались всегда.

Рост промышленности и металлургического производства, особенно заметный, как уже отмечалось, с XVI–XVII вв., понуждал заняться этим вплотную. Надо было понять, почему, к примеру, так много теряется металла на окалину; почему вес его увеличивается при нагревании. И вообще, что такое горение?

История открытия химических элементов и создания научной теории горения богата фактами, подтверждающими одну парадоксальную мысль, высказанную современным учёным Джоном Берналом: сделать открытие проще, чем понять, что оно сделано.

Вот кислород. Этот элемент вполне мог появиться уже в VIII в. Сведения о нём — косвенные, разумеется, — есть в трактате китайского алхимика Мао Хао. Китайцы знали «деятельное начало», входящее в состав воздуха, и называли его «йын». В XV в. следы кислорода можно обнаружить в трудах Леонардо да Винчи. Потом они снова теряются — до XVII в., когда голландец Дребелль изобретает подводную лодку и очень скоро убеждается, что обычного воздуха для дыхания в ней хватает ненадолго. И он использует селитру, чтобы её кислородом обогатить воздух в подводной лодке. Но этот факт остался незамеченным.

Или возьмём хлор. Трудно поверить, чтобы алхимики с ним ни разу не сталкивались, прокаливая поваренную соль с медным купоросом и квасцами. Алхимикам было не до него. Золото — вот что их интересовало. Да и как поймать и исследовать то, что поймать невозможно: формы оно не имеет и обладает «летучестью»? Первым, кто обратил внимание на эти «летучие» вещества, был знакомый нам Ван-Гельмонт, давший «летучим веществам» название — газы. Однако Ван-Гельмонт тут же предупреждает: газы «нельзя собрать ни в какой сосуд и нельзя сделать видимым телом».

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука