В очередной раз умы исследователей были взбудоражены в 60-х годах, когда на одном из английских радиотелескопов зарегистрировали правильно повторяющийся радиосигнал с периодичностью в несколько секунд. Эта запись совсем уже напоминала телеграфный сигнал, и первой мыслью была мысль о внеземной цивилизации. Но периодичность сигнала оставалась строго постоянной, а как мы теперь знаем, правильный периодический сигнал никакой информации не несет. Источник сигнала назвали
В заключение главы о радиоволнах хотелось бы сказать еще несколько слов о грядущей космической электромагнитной астрономии. Атмосфера Земли имеет два главных «окна прозрачности». Одно лежит в диапазоне световых волн с длинами 0,4…0,7 мкм. И благодаря ему мы наслаждаемся теплом солнечных лучей днем, светом Луны и звезд ночью, благодаря ему возможна самая древняя наука — оптическая астрономия. Другое окно прозрачности атмосферы — радиоокно. С одной стороны его ограничивает критическая частота ионосферы, соответствующая длинам волн 20…50 м, а с другой — частоты поглощения молекул водяного пара и атмосферных газов, соответствующие миллиметровым волнам. Как видим, радиоокно в тысячи раз «шире» оптического. Оно позволило появиться одной из самых молодых наук — радиоастрономии. Но ведь космос интересно исследовать и в других диапазонах волн инфракрасном, субмиллиметровом, рентгеновском. Такие исследования становятся возможными с созданием в космосе астрономических обсерваторий. Уже выведен на околоземную орбиту спутник с рентгеновским телескопом, широко используется в космических исследованиях инфракрасная техника. Особо следует подчеркнуть, что появление новых научных и технических направлений очень тесно связано с успехами радиоэлектроники — ведь все приемники изучения, системы регистрации, наведения и управления построены на основе электронной техники.
Ну а теперь, имея минимальные сведения о распространении радиоволн в условиях Земли, имеет смысл рассказать о конкретных радиоэлектронных устройствах, и прежде всего о том, из чего они сделаны.
5. «КИРПИЧИКИ» РАДИОЭЛЕКТРОНИКИ
Поговорим о строительстве соборов и вычислительных машин, о «дырках» в веществе, выпрямлении гвоздей и переменного тока, о транзисторах и интегральных схемах, объединяющих тысячи транзисторов, о том, как сделать усилитель и счетчик импульсов, и о многом другом, что лежит в основе радиоэлектроники.
Давным-давно во французском городе Шартре, когда однажды строителей спросили, что они делают, один ответил: «Ношу кирпичи». Другой сказал: «Готовлю раствор». Третий, не отрываясь от работы, буркнул: «Наращиваю леса». И лишь один, выпрямившись и гордо оглядев уже сделанное, произнес: «Я строю Шартрский собор!»
Как часто за мелочами не видно главного! В современной высокоразвитой электронной промышленности заняты десятки тысяч человек. Одни выращивают высокочистые полупроводниковые кристаллы, другие изготавливают на высокоточном оборудовании интегральные микросхемы, третьи разрабатывают их топологию, четвертые заняты программным обеспечением ЭВМ, есть масса занятий для пятых, шестых и т. д… Но все они вместе возводят одно величественное здание современной электроники — техники, без которой уже не может обойтись ни одна отрасль народного хозяйства.
Любое современное здание, например жилой дом, строится из весьма ограниченного набора блоков — панелей, балок, перекрытий. Расположив эти блоки в различных сочетаниях, можно построить и низкое длинное здание, и возвышающийся как башня над всем городом небоскреб. Даже при ограниченном наборе основных блоков архитекторам предоставлена широкая свобода для творчества. Так и в современной электронике из сравнительно небольшого числа основных «базовых» блоков: транзисторов, конденсаторов, резисторов и т. д. можно создать бесчисленное множество электронных устройств: радиоприемники, телевизоры, аппараты записи и воспроизведения звука, передачи данных, ЭВМ и многие-многие другие.