Читаем Посвящение в радиоэлектронику полностью

Так как же обычная человеческая речь превращается в поток цифр, ведь на выводах микрофона имеется быстро изменяющийся речевой сигнал (как показано на рисунке)? А вот как. Берутся отсчеты, т. е. значения этого сигнала через равные промежутки времени τ. Интервал τ должен быть настолько мал, чтобы речевой сигнал не успевал намного измениться между отсчетами. Этот интервал часто называют временным шагом дискретизации или интервалом Найквиста. Минимальную частоту взятия отсчетов, т. е. величину, обратную временному шагу дискретизации, определяет теорема В. А. Котельникова (академика, основателя теории помехоустойчивости систем связи). Частота отсчетов должна быть вдвое больше самой высокой частоты звукового спектра. В телефонии принято передавать частоты только до 3400 колебаний в секунду, т. е. до 3,4 кГц. При этом разборчивость речи еще очень хорошая. Значит, частота взятия отсчетов должна быть не менее 6800 в секунду, или 6,8 кГц. Процесс взятия отсчетов называют дискретизацией по времени.

Для цифровой оценки отсчетов нужен следующий процесс — дискретизация по уровню. Каждый отсчет можно представить числом, соответствующим значению отсчета звукового напряжения. Например, если звуковое напряжение измерять в милливольтах, то число целых милливольт и будет отсчетом, а один милливольт — шагом дискретизации по уровню. Ошибка квантования но уровню в данном случае не превзойдет половины шага квантования, т. е. 0,5 мВ. Отношение максимальной амплитуды звукового напряжения к шагу квантования даст максимальное число, которое можно получить при отсчетах. Оно определяет динамический диапазон передаваемого сигнала. Для передачи телефонной речи с удовлетворительным качеством достаточен динамический диапазон (отношение максимального уровня сигнала к минимальному) 30… 35 дБ, что соответствует числу шагов квантования при отсчетах 30. Для передачи одного отсчета двоичным кодом в этом случае достаточно In 230 ~= 5 разрядов. Для хорошей передачи музыки это число, число шагов квантования по уровню, должно быть не менее 10000, что соответствует динамическому диапазону 80 дЬ. В этом случае для передачи одного отсчета потребуется log210000 ~= 14 разрядов.

Преобразование аналогового сигнала в цифровой.

Наконец мы можем оценить поток информации при телефонном разговоре. Полагая полосу звуковых частот равной 3,4 кГц и частоту взятия отсчетов 6,8 кГц, получаем количество отсчетов в секунду 6800. При 30 шагах квантования по уровню каждый отсчет занимает 5 разрядов. Следовательно, в секунду передается 34000 двоичных разрядов, или бит информации. Скорость передачи информации, измеренную в битах в секунду, можно выразить формулой

С = 2F·log2N,

где F — наивысшая частота звукового спектра; N — число уровней квантования.

Перейдя на цифровую передачу, мы существенно улучшили качество связи. Но не даром же это досталось! Чтобы передать цифровой сигнал со скоростью 34 кбит/с, нужна полоса частот, пропускаемых каналом связи, не менее 34 кГц. А теперь вспомним, что для передачи обычного аналогового телефонного сигнала требуется полоса частот всего 3,4 кГц. Таким образом, цифровые системы связи оказываются широкополосными. Происходит как бы обмен полосы частот на отношение сигнал-шум, но обмен достаточно выгодный. Расширяя полосу частот в десять раз при переходе к цифровой передаче, мы намного снижаем допустимое отношение сигнал-шум, или сигнал-помеха, в канале связи, и это при общем существенном улучшении качества.

Скорость передачи 34 кбит/с достаточно большая, но надо учесть, что при телефонном разговоре с речью как таковой передаются и интонации голоса, и эмоциональная окраска, что хорошо знают все, кто разговаривал друг с другом по телефону, да и не только по телефону. Телеграф, к сожалению, таких нюансов передать не может. Давайте ради интереса оценим, каков будет поток информации, если телефонный разговор заменить телеграфной передачей того же текста. При среднем темпе речи человек произносит 1… 1,5 слова в секунду. Каждое слово состоит в среднем из пяти букв. А для передачи телеграфом одной буквы требуется 5 бит (считаем, что алфавит содержит 32 знака). Перемножив все эти числа, получим скорость передачи телеграфной информации, соответствующей тексту телефонного разговора в реальном масштабе времени, С ~= 30… 40 бит/с. Это почти в тысячу раз меньше! Вот во что обходятся связистам эмоции и интонации телефонных разговоров. Одна и та же междугородная линия связи может пропустить, скажем, 16 телефонных каналов или несколько тысяч телеграфных!

Но подождите, то ли еще будет, когда мы перейдем к телевидению! Там ведь надо передавать еще и движущиеся изображения.

Перейти на страницу:

Все книги серии Массовая радиобиблиотека

Похожие книги

102 способа хищения электроэнергии
102 способа хищения электроэнергии

Рассмотрена проблема хищений электроэнергии и снижения коммерческих потерь в электрических сетях потребителей. Приведены законодательно–правовые основы для привлечения к ответственности виновных в хищении электроэнергии. Изложены вопросы определения расчетных параметров средств учета электроэнергии, показаны схемы подключения счетчиков электрической энергии. Описаны расчетные и технологические способы хищения электроэнергии. Обсуждаются организационные и технические мероприятия по обнаружению, предотвращению и устранению хищений.Для работников энергоснабжающих организаций и инспекторского состава органов Ростехнадзора. Материалы книги могут быть использованы руководителями и специалистами энергослужб предприятий (организаций) для правильного определения расчетных параметров средств учета и потерь электроэнергии в электрических сетях.Если потенциальные расхитители электроэнергии надеются найти в книге «полезные советы», они должны отдавать себе отчет, что контролирующие структуры информированы в не меньшей степени и, следовательно, вооружены для эффективной борьбы с противоправной деятельностью.Настоящая книга является переработанным и дополненным изданием выпущенной в 2005 г. книги «101 способ хищения электроэнергии».

Валентин Викторович Красник

Технические науки / Образование и наука
Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки
100 великих чудес инженерной мысли
100 великих чудес инженерной мысли

За два последних столетия научно-технический прогресс совершил ошеломляющий рывок. На что ранее человечество затрачивало века, теперь уходят десятилетия или всего лишь годы. При таких темпах развития науки и техники сегодня удивить мир чем-то особенным очень трудно. Но в прежние времена появление нового творения инженерной мысли зачастую означало преодоление очередного рубежа, решение той или иной крайне актуальной задачи. Человечество «брало очередную высоту», и эта «высота» служила отправной точкой для новых свершений. Довольно много сооружений и изделий, даже утративших утилитарное значение, тем не менее остались в памяти людей как чудеса науки и техники. Новая книга серии «Популярная коллекция «100 великих» рассказывает о чудесах инженерной мысли разных стран и эпох: от изобретений и построек Древнего Востока и Античности до небоскребов в сегодняшних странах Юго-Восточной и Восточной Азии.

Андрей Юрьевич Низовский

История / Технические науки / Образование и наука