Оптоэлектронные приборы могут работать в видимой, инфракрасной и ультрафиолетовой областях спектра. Освоенной областью считается диапазон длин волн излучения от 0,2 до 50 мкм. Физическую основу оптоэлектроники составляют процессы преобразования оптических сигналов в электрические и наоборот — электрических в оптические. Оптоэлектроника изучает также процессы распространения излучения в различных средах и взаимодействие излучения с веществом. Оптоэлектроника примыкает к ряду дисциплин, превратившихся уже в целые научные направления. Сюда относятся квантовая электроника, полупроводниковая электроника, физика твердого тела, голография, нелинейная оптика и многие другие. Большинство оптоэлектронных приборов содержит в своем составе генераторы и приемники излучения. К их описанию мы и перейдем.
Теоретические основы оптического квантового генератора разработали советские ученые Н. Г. Басов и А. М. Прохоров, а также независимо от них американцы А. Шавлов и У. Таунс. За свои открытия они были удостоены Нобелевской премии. Первый работающий лазер на рубине продемонстрировал Т. Меймен (США) в 1960 году.
В лазере излучают атомы вещества — рабочего тела лазера. Рабочее тело может быть и твердым, и жидким (очень редко), и газообразным. Чтобы атомы излучали, их надо прежде всего возбудить, т. е. сообщить им энергию. В твердотельных лазерах для этого служит оптический генератор накачки — импульсная лампа — вспышка большой мощности. Ее трубка расположена рядом с рабочим телом кристаллом рубина или неодимового стекла. Твердотельные лазеры, как правило, импульсные, так как при той мощности оптического излучения, которую они генерируют (мегаватты и даже гигаватты), ни одна конструкция не выдержала бы работы более нескольких микросекунд.
В газовых лазерах плотность атомов мала, и они могут работать в непрерывном режиме при небольших мощностях излучения: около нескольких милливатт (лазер на смеси гелия и неона, Не-Ne-лазер) или десятков ватт (инфракрасный лазер на углекислом газе СО2). Газ этих лазеров заключен в разрядную трубку, и возбуждение атомов (накачка) осуществляется электрическим током. Но возбудить атомы рабочего вещества мало, надо заставить их излучать синхронно, всем вместе одну и ту же волну с одной и той же поляризацией и фазой. Различают спонтанное (случайное, самопроизвольное) и вынужденное излучения. Вот последнее-то и используют в лазерах. Рабочее вещество подбирают такое, чтобы у его атомов был метастабильный (почти стабильный) энергетический уровень. Атомы, возбужденные накачкой до энергии метастабильного уровня или до еще большей энергии, остаются на этом уровне некоторое время. Если в этот момент мимо возбужденного атома промчится квант света с частотой, соответствующей энергии перехода с метастабильного на более низкий уровень, то атом совершит этот переход и излучит еще один, точно такой же квант. Это и будет индуцированное, или вынужденное, излучение. Если энергию атома на метастабильном уровне обозначить E2, а энергию на более низком уровне E1, то условие излучения, установленное еще Нильсом Бором, можно записать так:
hv = E2 — E1
где h — постоянная Планка; v — частота излучения. Величина hv является энергией кванта.
Чтобы создать все условия для интенсивного индуцированного излучения, надо значительно увеличить число квантов, распространяющихся в рабочем теле лазера. Эту задачу выполняет оптический резонатор — два зеркала, установленные строго параллельно друг другу. Вы можете сделать простой опыт с двумя маленькими зеркалами. Расположите зеркала «навстречу» друг другу и посмотрите поверх одного на другое. Вы увидите отражение одного зеркала в другом, а в том — первого, и т. д. Получится туннель из ряда зеркал, уходящий очень далеко, в туманную бесконечность. Поскольку качество бытовых зеркал невысокое, вам удастся увидеть всего семь десять отражений. Качество зеркал в лазерах гораздо выше и свет переотражается десятки и сотни раз. Расстояние между зеркалами подбирается с точностью до малых долей микрометра таким образом, чтобы на длине оптического резонатора уложилось целое число полуволн лазерного излучения. В этом случае поля переотраженных волн складываются, результирующая напряженность поля возрастает в сотни раз, что как раз и нужно для индуцированного излучения атомов рабочею тела. Одно из зеркал делается полупрозрачным, пропускающим несколько процентов падающей на него оптической энергии. Оно и служит выходным окном лазера.