Возьмем, например, счетную вычислительную работу. Робинзону Крузо пришлось делать зарубки на деревяшке, считая дни до прибытия спасительного судна, а число их составляло 365 в году, всего он провел на необитаемом острове 28 лет, да еще надо учесть високосные годы… Так и хочется попросить для расчетов бумагу и карандаш, потому что сделать это в уме уже непросто. Однако сейчас некоторые школьники попросят микрокалькулятор — времена меняются! Еще в прошлом веке делать зарубки на палке перестали — хлопотно и неудобно. Изобрели конторские счеты — прибор на редкость простой и долгоживущий. В принципиальном отношении они недалеко ушли от четок средневекового монаха. Правда, у счетов есть и одно неоспоримо прогрессивное нововведение — система счета по разрядам, соответствующим разрядам десятичных чисел.
В 1641 году Б. Паскалем была изобретена механическая машинка для арифметических вычислений. Однако первую действующую модель, выполняющую четыре арифметических действия, построил немецкий часовой мастер Ган только в 1790 году. Лишь через сто лет, в 1890 году, петербургский механик В. Однер наладил производство отечественных арифмометров. Они «умели» складывать и вычитать многозначные числа. Я не знаю, как устроен механический арифмометр, но людям свойственно уважать сложное и непонятное. Так и я преклоняюсь перед смекалкой и талантом механиков, сумевших создать это хитроумное переплетение зубчатых колесиков, кнопок и рычагов. Позже появились электрические арифмометры (не путайте с электронными!). Там все было то же самое, но ручной привод был заменен электрическим. Набрал нужные числа, нажал кнопку — «хр…р…р…юк» — выскочил в окошечке результат. Эти старинные арифмометры напоминали старые кассовые аппараты, на которых еще недавно работали кассиры магазинов. Даже автоматизировав выполнение четырех арифметических действий, мы не выйдем за пределы школьной науки арифметики.
А как быть с алгеброй, дифференциальными уравнениями, вариационным исчислением, теорией функций комплексного переменного и многими-многими другими математическими дисциплинами? Не подумайте, что математики придумали эти науки для собственного развлечения. Они очень нужны всем в практической деятельности.
Вот пример. Мы уже рассматривали грузик на веревочке — обыкновенный маятник. Его движение описывается дифференциальным уравнением второго порядка. Найти закон движения маятника означает решить это уравнение. А как это сделать, подсказывает математика. Став очень сложной наукой, она достигла больших успехов. И все-таки математика не может решить аналитическим путем многие задачи, встречающиеся на практике. Решить задачу аналитически — это значит выразить ответ в виде формулы. Но на практике есть зависимости, для которых и формулы подходящей не подберешь. Например, квадратное алгебраическое уравнение решается аналитически и в школьных тетрадях. Вы писали формулу х1,2 =… и т. д. Сами помните. Для уравнения пятой или шестой степени такой формулы написать уже нельзя. Еще хуже обстоит дело с дифференциальными уравнениями. Они бывают такими, что ответ просто невозможно выразить аналитическими формулами.
Как же быть? Нам останется только одно: решать наши «нерешаемые» уравнения числовыми методами. Как это делается? Да очень просто: берут всевозможные числа и подставляют в уравнение. То число, которое удовлетворит уравнению, и есть его решение для заданных начальных условий. Конечно, это Сизифов труд — перебирать подряд все числа. Но и здесь математики нашли оптимальные пути решения. Если, взяв одно число, мы получили то-то, значит, надо взять другое число, гораздо большее, а если получили вот это, то надо взять немного меньшее число. Возникает определенная логика перебора чисел, кратчайшим путем ведущая к цели. Вы уже, наверно, догадываетесь, что численные методы как нельзя лучше подходят для цифровых ЭВМ, а оптимальный алгоритм, логику решения можно заложить в программе, по которой производит расчеты ЭВМ.
Но еще совсем недавно были только арифмометры, которыми пытались механизировать труд больших «вычислительных центров» при крупных бухгалтериях или банках. Решать дифференциальные уравнения с помощью арифмометра и не пытались, вполне справедливо предполагая полную бесполезность этого занятия. С рождением электронной техники появились довольно любопытные изобретения в области так называемых аналоговых вычислительных машин. Одно время им даже предсказывали славное будущее (заметим, что предсказание сбылось лишь частично). В аналоговых ЭВМ числа или переменные (х) представляются электрическим сигналом, например напряжением. А математические операции производятся электронными устройствами. Например, усилитель с двумя входами может служить сумматором, дифференциальный усилитель вычитателем, кольцевой балансный модулятор — перемножителем, и т. д.