Для передачи звуков с динамическим диапазоном 90 дБ каждый отсчет сигнала должен квантоваться не менее чем на 30000 уровней. Для передачи одного отсчета потребуется 15 бит информации (215 = 32 768). Отсчеты должны следовать с тактовой частотой, по крайней мере вдвое превышающей максимальную частоту звукового диапазона (вспомните теорему отсчетов). Подойдет значение 48 или 64 кГц. Тогда скорость поступления звуковой информации в цифре составит около 106 бит/с, или 1 Мбит/с. Полоса частот, занимаемая подобным цифровым сигналом, окажется шире 1 МГц. Для его записи понадобится уже не обычный, а видеомагнитофон. Ну не совсем видео, но по параметрам приближающийся к видеомагнитофону. Зато цифровая запись позволит получить звук, практически неотличимый от естественного.
Кроме магнитной существуют и уже разрабатываются другие способы цифровой записи звука. Очень интересны, например, диски, на которые лазерным лучом записана цифровая информация. Высокая когерентность лазерного излучения позволяет получать чрезвычайно высокую плотность записи. Одна сторона диска может «звучать» до полутора часов. Работы ведутся и в области лазерной видеозаписи. Вот какие источники программ мы увидим в недалеком будущем.
Цифровых дисков еще нет у слушателей, но на студиях звукозаписи цифровая техника уже широко используется. Записываемый сигнал в этом случае сразу преобразуют в цифровую форму и лишь затем обрабатывают и редактируют. Большинство искажений, создаваемых обычными аналоговыми звукорежиссерскими устройствами, при этом устраняется. Резцом звукозаписывающего рекордера управляет теперь не усилитель аналогового сигнала, а цифровое устройство. Делает оно это гораздо точнее; в результате качество обычной аналоговой записи на пластинках существенно повышается. И для передачи записываемой программы на другой завод грампластинок теперь можно не посылать диск-матрицу, а передать по сети связи «пакет» чисел в виде электрических импульсов, записанных на магнитной ленте или магнитном диске. Такой вид передачи очень близок к обмену информацией между компьютерами. Но компьютер сначала запоминает получаемую информацию, а уж затем ее обрабатывает. А нельзя ли с помощью компьютерных устройств памяти запоминать и звук, преобразованный в поток цифровых сигналов? Конечно, можно, и первые шаги в этом направлении уже сделаны.
Когда я упомянул о телефонной трубке, в рукоятку которой встроен миниатюрный магнитофон, я не сказал о другой, конкурирующей разработке. Цель, собственно, была простая — необходимо было устройство, записывающее телефонные звонки в отсутствие абонента. Телефонный ответчик на базе магнитофона хорошо известен и уже далеко не новинка. А вот в той, другой разработке в телефонную трубку встроили аналого-цифровой преобразователь и полупроводниковое устройство памяти, хранящее полученную и преобразованную в цифровой код информацию. Хотя длительность записи получилась весьма небольшой, всего около 20 с, первый шаг сделан! Важным достоинством такого, чисто электрического способа звукозаписи является полный отказ от механики в устройстве нет ни одной движущейся или вращающейся части. Развитие и дальнейшее усовершенствование этого способа звукозаписи (увеличение полосы частот и длительности записи) теперь уже дело технологии, а она, как показывает опыт, совершенствуется очень быстро, особенно в области полупроводниковой электроники. Как только появятся небольшие и дешевые устройства полупроводниковой памяти объемом в сотни мегабит, у проигрывателя и магнитофона будет очень сильный конкурент. Вот так вычислительная техника вторгается в совершенно неожиданные и, казалось бы, совсем несовместимые области техники. Есть и еще одно — применение микроЭВМ.
На память приходит броский лозунг: «ЭВМ управляет бытовым радиокомплексом». Странно? До сих пор бытовым радиокомплексом управлял человек, слушатель или, как теперь все чаще говорят, пользователь. Давайте определим число органов управления современным бытовым радиокомплексом. Тюнер: ручка настройки, переключатель диапазонов, ручка выбора полосы пропускания, переключатель «Местный дальний прием», общий выключатель — итого пять органов управления. Примерно по стольку же, если не больше, органов управления и у других устройств, входящих в радиокомплекс. Всего набирается несколько десятков органов управления. Есть у вас гарантии, что все они установлены в оптимальные для данного режима работы и воспроизводимой программы положения?