Читаем Портрет трещины полностью

…И вот – внезапный свет сквозь тени…

В. Брюсов

Каким бы ни было торможение трещин, это всего лишь торможение, а не залечивание их. Поэтому цели его ограничены: срочно остановить разрушение, предотвратить надвигающуюся катастрофу, выиграть минуты, чтобы закончить какой-то производственный цикл, и провести ремонт изделия, например заварить разрыв. Ясно поэтому, что все то время, пока в теле работающего металла существует трещина, хоть и приторможенная, он будет неполноценным, ущербным. И тем не менее даже такой умеренный процесс, как торможение трещины, нужен и полезен, ведь он предотвращает аварию, чреватую отрицательными последствиями, а часто и непоправимыми бедами.

Как же остановить трещину? Очевидно, вырвать у нее звено, без которого она не может существовать. Скажем, не допустить зарождения трещины. В принципе, конечно, это возможно, но практически нет. Дело в том, что зародышевые трещины либо уже имеются в детали с самого начала ее существования, либо сравнительно быстро появляются на самых ранних стадиях эксплуатации вследствие усталости металла. Значит, на этом пути мы вряд ли сможем одержать победу. Другое дело подрастание и закритический рост трещины. И тот, и другой требуют подведения к трещине упругой энергии. А нельзя ли этот поток если не прервать, хотя бы приостановить: превратить его в тонкую струйку?

Есть три пути, позволяющие это сделать. Обратимся к первому из них, самому радикальному. Нельзя ли при первых же признаках опасности моментально разгрузить

всю систему с растущей трещиной? То есть лихо, «топором отрубить» действующую разрушающую силу от скомпрометированного узла и приложить ее к другим запасным пластинам металла. Наверное, в каких-то случаях это и можно было бы сделать. Но при этом возникли бы немалые трудности. Ведь чтобы мгновенно разгрузить систему с растущей трещиной, нужны быстродействующие устройства с невероятной реакцией-в тысячные и меньшие доли секунды. Это еще не все. К сожалению, здесь работает и обоснованно работает принцип: все или ничего. Во что бы то ни стало нужно разрядить, или как говорят физики, релаксировать все упругое поле. В противном случае достаточно хрупкая трещина, «подкрепляемая» энергией с неразгруженных участков, продолжит свой рост. Ей ведь многого и не надо.

Куда более простым и земным было бы следующее. Проектируют, допустим, крыло самолета. Исходят при этом из его прочности в состоянии монолитном. А надо учитывать кризисный случай, когда в крыле появляется трещина. Очевидно, это меняет многое. Концентрация напряжений теперь гораздо больше расчетной, да и остальной неповрежденный массив крыла, хотя и находится далеко от очага разрушения, вносит свою лепту во зло – ведь он поставляет упругую энергию растущей трещине.

Как бороться с этим? Прежде всего проектировать любую ответственную конструкцию, исходя из ее поведения не только в монолитном состоянии, но и в кризисном. Для этого мало думать об уменьшении концентрации напряжений вокруг заклепок или о понижении напряжений за счет запаса прочности. Надо прогнозировать возможное подрастание трещины и принимать меры для того, чтобы всеми средствами понизить поток упругой энергии, поступающей к разрыву. Как это сделать? Надо, вероятно, разработать целую систему спасения от разрушения. И должна она включать сознательное управление разрушением, которого всегда надо опасаться. Никто не говорит, что просто. Но это необходимо.

Вот один из путей, способных облегчить решение этой задачи. Пусть нам удалось приостановить переход трещины из докритического состояния в закритическое. Означает ли это, что трещина остановлена? Не обязательно. Она может и подрастать, только медленно. Но это значит, что энергия, подводимая к трещине внешней си-

лой и упругим резервуаром, затрачивается на пластическую деформацию в ее вершине. Вариант, конечно, не самый хороший – разрушение-то все-таки идет! Но все же он «лучше» взрывного и неуправляемого закритического разрушения. Потому, что мы выигрываем время!

Как же можно продлить процесс разрушения в целом за счет пластификации? Прежде всего это входит в обязанности конструкционного материала. Он должен быть не только прочным, но и вязким. Если запас пластичности у него велик, это отодвинет момент зарождения трещины. Но и дальше способность металла деформироваться скорее и легче, чем разрушаться, обезопасит его от быстрого перехода вязкой трещины в лавинную стадию «оголтелого» разрушения, «обрушивающегося» со звуковыми скоростями. Все это время, пока докритическая трещина медленно подрастает, пластическая деформация в ее вершине «перемалывает» упругую энергию окружающего пространства, превращая ее в тепло, рассеивающееся в металле и воздухе. Выходит, что пластическая деформация здесь играет роль не только буфера, смягчающего нагружение, но и клапана, выпускающего «лишний

Перейти на страницу:

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука