Более того, если бы удалось решить вопросы управления проницаемостью таких мембран (что и происходит в живой клетке), то на базе полупроницаемых мембран можно было бы создавать системы, аналогичные гибким технологическим системам в промышленности. Пока методов работы с биомембранами не разработано, ведь сначала должны быть предложены способы их выделения из нативных клеток, а также стабилизации. Исследования пленочного роста микроорганизмов позволили обнаружить не только удивительные механические свойства этих пленок (об этом упоминалось в главе 5), но и особенности контактов микроорганизмов друг с другом. Это позволило ученым из Массачусетского технологического университета увеличить мощность топливных элементов в несколько раз. При этом пленка функционировала как единая токопроводящая система, объединяющая индивидуальные потоки электронов, производимые отдельными клетками.
Однако уже работают мембраны — аналоги живых мембран. Можно ли отнести эти технологии к биотехнологии? И да и нет. Но в конце концов неважно, как мы назовем эти новейшие технологии разделения, — главное, что они используют принципы, близкие к биологическим, и на основании этого (хотя и условно) могут быть отнесены к биотехнологическим процессам.
Помимо возможного использования биомембран реальный интерес представляет применение внутриклеточных органелл микробной клетки, в частности, магнитосом. По сути они представляют собой маленькие магнитики, образующиеся внутри бактериальной клетки. В последнее время возникла потребность в магнитоуправляемых частицах для использования в диагностике и при лечении некоторых заболеваний.
Так, присоединение к антителам магнитных частиц вместо молекул флуоресцентных красителей примерно в 100 (!) раз повышает чувствительность методов выявления специфических белков, используемых для диагностики.
Кроме того, магнитные частицы применяются для гипертермии. Суть этого метода в том, что микромагниты можно с помощью магнитов или под действием магнитных полей направлять в нужный орган и удерживать там, а облучая их высокочастотным электромагнитным полем, вызывать локальный точечный нагрев, приводящий к гибели окружающих магнит клеток раковой опухоли.
Производство магнитных частиц одинаковой формы и размера — достаточно сложная задача, особенно если они измеряются нанометрами. И это только часть задачи: нужно еще покрыть каждую частицу белковой или углеводной оболочкой, к которой можно будет «привязать» химическими связями антитело.
Между тем есть другой, микробиологический путь получения таких магнитных частиц. Известно, что некоторые бактерии (такие как, например,
Таким образом, биотехнология позволяет получать магнитные частицы с различными антителами и использовать их для точной «адресной» доставки лекарств, радионуклидов или «тепловых бомб» к пораженным органам и даже клеткам и осуществить наконец мечту Пауля Эрлиха о «магической пуле».
Биотехнология может умело извлекать пользу не только из различных свойств микроорганизмов, но из самого факта их широкого распространения.
Рассмотрим один из таких примеров. Известно, что растения в принципе способны выдерживать снижение температуры до -6 °C. Однако в действительности серьезные поражения растительных тканей листьев, например, апельсиновых деревьев наступают при минусовых температурах, близких к нулю. Дело в том, что на поверхности листьев образуются кристаллы льда, разрушающие их ткань. Микробиологи из Калифорнийского и Колорадского университетов, изучая вопросы морозоустойчивости цитрусовых, установили, что центрами кристаллообразования льда служат бактерии
Интересно использование в качестве инсектицида мицелия грибов