Однако вернемся к вопросу о наличии микроорганизмов на Луне и других планетах Солнечной системы. Возможность существования на них жизни издавна интересовала человечество, и именно микроорганизмы с их изумительной приспособленностью к экстремальным условиям и способностью использовать в качестве источника энергии широкий спектр субстратов являются лакмусовой бумажкой для определения наличия жизни. Последние успехи космонавтики впервые позволили провести прямые исследования этого вопроса. Американские ученые Г. Тейлор, Е. Фергюссон и К. Траби провели анализ лунного вещества, доставленного на Землю в условиях полной асептики. При этом авторы исследовали не только грунт с поверхности, но и образцы из нижележащих слоев. Эксперименты проводили в специально оборудованном боксе, высевая тонкоизмельченные образцы грунта на различные среды. После инкубации в течение 21 дня ни на одной из испытанных сред не был обнаружен рост микроорганизмов. Однако полученные результаты отнюдь не дают однозначного ответа на поставленный вопрос. Связано ли отсутствие развития микроорганизмов с отсутствием микрофлоры в образцах лунного грунта, или полученные результаты свидетельствуют о подавлении роста микроорганизмов химическими веществами, содержащимися в испытуемых образцах, или, наконец, только подтверждают неспособность «лунных» бактерий расти на испытанных питательных средах? Ответы на эти вопросы могут быть получены после проведения дополнительных исследований.
Предварительные результаты изучения Марса с помощью автоматических станций тоже не позволяют сделать однозначный вывод о наличии или отсутствии микрофлоры на этой планете.
Человечество уже сделало первые шаги за пределы Земли. Главная особенность предстоящих космических путешествий — это их длительность. Представьте себе, что вы собираетесь в долгое космическое путешествие, пусть даже в пределах Солнечной системы. Тогда вам необходимо подумать об обеспечении экипажа не только оборудованием и скафандрами, но и воздухом, водой и пищей на весь период путешествия. Кстати сказать, полет, например, на Марс и обратно продлится около двух лет. Самый скромный запас необходимых для этого продуктов, даже если экипаж состоит всего из нескольких человек, никакой корабль не вместит, не говоря о трудностях вывода такого груза на околоземную орбиту. Выход из этого один: нужно многократно использовать продукты питания, превращая отходы вновь в продукты питания и регенерируя воздух в кабине корабля, т. е. в миниатюре воспроизводя кругооборот веществ, который существует на Земле. На нашей планете он осуществляется в течение длительного периода. Экологическая емкость Земли достаточно велика, и если в одном из звеньев не происходит полного возвращения веществ обратно в цикл, то это компенсируется их интенсивным возвратом в другом звене. В условиях космического полета, когда цикл замыкается не на всю Землю, а только на систему регенерации космического корабля, емкость которой невелика, проблема многократно усложняется. Решение этой задачи может быть обеспечено лишь за счет высокой интенсивности работы систем регенерации. Известные системы химического типа или основанные на «работе» растений по интенсивности не могут сравниться с регенерирующими системами на основе микроорганизмов.
И действительно, только с помощью микроорганизмов, поскольку они обладают высокой интенсивностью обмена, можно создать замкнутую экологическую нишу, которую и представляет собой космический корабль, способный к длительным путешествиям в космосе.
Глава 26
Микробы вытесняют бензин
…Я считаю, что подлинный переворот в энергетике произойдет только тогда, когда мы сможем осуществлять массовый синтез молекул, аналогичных хлорофиллу, или даже более высокого качества.
Человеку нужна энергия для всего, чем он занимается, вплоть до самого факта его существования. Повышение жизненного уровня, дальнейшее развитие промышленности и сельского хозяйства требуют все больше и больше энергии. Только за последние 100 лет мощности установок по ее получению возросли в 1000 раз. Остается надеяться, что в дальнейшем энергетические потребности человечества будут возрастать не так стремительно. Предварительный прогноз на ближайшие 20 лет предполагает двукратное увеличение потребности в энергии. Между тем расчеты показывают, что уже в ближайшие годы традиционных энергоресурсов, таких как уголь, нефть и газ, окажется недостаточно для удовлетворения растущих потребностей человечества. Так возникла еще одна проблема нашего времени — энергетическая.
Возьмем для примера автомобильный транспорт. Используемая им энергия составляет около половины всего ее количества, потребляемого в настоящее время человечеством.