Электромиограф (ЭМГ) используется для измерения реакции скелетных мышц. Измерения времени реакции, которые называются исследованиями нервной проводимости и скорости проводимости, могут выполняться с помощью стимуляции нервной системы импульсом тока, например, на кисти, и измерения реакции на мышцах плеча, что дает ценную информацию медику. Так, защемленный нерв замедляет скорость импульса, это увеличивает задержку или время задержки. ЭМГ также позволяет измерить множество различных показателей мышечной активности, например, действие сфинктеров. Мочевой пузырь накачивается, как воздушный шар, двуокисью углерода, и электроды измеряют реакцию мышц, пытающихся удержать его. Другие аппараты ЭМГ используются в операционных для измерения неврологической активности во время сложных операций на мозге и позвоночнике.
Все приборы, которые измеряют биопотенциалы — ЭКГ, ЭЭГ и ЭМГ — имеют очень малые значения входных сигналов и используют усилители, которые должны быть изолированы от земли. Это может вызвать определенные затруднения у специалиста при прослеживании сигнала от входа до выхода. Использование обычного, заземленного осциллографа с одним щупом может вызвать значительный шум в схеме. Кроме того, осциллограф сам по себе не может работать с низкими уровнями сигналов при очень малом отношении сигнал/шум. Лучший выход — использовать высококачественный дифференциальный осциллограф, у которого ни один из входных каналов не проводит измерения относительно земли. Многие двухканальные осциллографы позволяют инвертировать канал 2 и суммировать его с каналом 1 для обеспечения дифференциальных измерений. После того как сигнал был усилен изолированным предусилителем, можно вспомнить о традиционных методах обслуживания аналоговых схем.
Самописцы
Все описанные выше устройства, связанные с измерением биопотенциалов, используют самописцы для распечатки результатов проведенных тестов — механизмы. подающие бумагу с постоянной скоростью через устройство, которое ставит на бумаге пометки. Бумага перемещается по оси X, а устройство, делающее пометки, — по оси Y. Это дает график изменения биологического сигнала во времени. В более старых самописцах усиленный биологический сигнал подастся в двухтактный усилитель с выходным током, достаточным для отклонения катушки гальванометра. Перо, которое механически закреплено на выходном валу гальванометра, ставит отметки на бумаге.
Многие самописцы в прошлом использовали перо с подогревом острия и термочувствительную бумагу. Ширина линии определялась количеством тепла на острие пера. Постепенно на кончике пишущего механизма накапливалась грязь, что давало очень широкие линии, сигнализирующие о том, что настало время для замены.
Другие производители использовали чернильные перья. Эти системы при правильной настройке давали очень высококачественные графики. Перо было просто капиллярной трубкой, конец которой находился в контакте с бумагой. Чернила выходили под давлением. Если перо не было настроено для обеспечения контакта с бумагой по всему периметру, чернила образовывали капли и расплывались. Одной из процедур технического обслуживания для этих приборов была тщательная очистка острия пера с помощью бумаги.
Сейчас индустрия здравоохранения все еще использует значительное число упомянутых самописцев. Однако в последние годы наметилась тенденция к использованию цифровой регистрации физиологических сигналов.
Цифровые самописцы используют линейный массив нагревательных элементов с цифровым управлением. Они располагаются очень близко друг к другу и могут давать весьма четкие линии на любом месте страницы. По мере того как бумага подается через нагревательный элемент, цифровая форма физиологического сигнала нагревает соответствующие точки элемента, что в результате приводит к образованию отметки на бумаге. С помощью того же элемента можно напечатать буквенно-цифровые символы, посылая сигналы на соответствующие термоэлементы, что похоже на то. как компьютер посылает их на матричный принтер. Некоторые системы используют даже рулон теплочувствительной бумаги и печатают масштабную сетку на диаграммах вместе с биосигналом (рис. 10.17).
Рис. 10.17.
Рентгеновские установки
Рентгеновское излучение было открыто в начале XX века и быстро стало важнейшим инструментом в медицине. Над технологией построения подобных машин размышлял еще Эдисон около ста лет назад. Главное достоинство этого изобретения в способности проникать сквозь объекты. Рентгеновские лучи представляют собой жесткое коротковолновое электромагнитное излучение, подобное свету и радиоволнам, действующее на фотопленку и флуоресцентные материалы. Таким образом получается изображение. Современные рентгеновские установки значительно продвинулись в эффективности, качестве изображений, системах управления, безопасности и обработке результатов с помощью компьютеров.