В современном производстве происходит постепенная замена традиционных печатных плат с компоновкой стандартных интегральных микросхем (ИМС) с двурядным расположением выводов и пассивных элементов с выводами для объемного монтажа. Возросшие системные требования, корпуса меньших размеров, стоимость производства и т. д. стимулируют разработчиков и изготовителей к применению специализированных ИМС, увеличению плотности монтажа элементов и уменьшению размеров плат. В результате характеристики новейших электронных изделий как бытовых, так профессиональных, непрерывно улучшаются. Современные технологии автоматизированного проектирования и производства повышают плотность деталей на единицу площади платы, но также делают ремонт почти невозможным без специального оборудования.
К подобным случаям относятся приборы поверхностного монтажа, применяемые ранее лишь в производстве так называемых гибридных микросхем (см.
Выводы ИМС изгибаются в соответствующем направлении для обеспечения достаточной площади пайки к контактным площадкам. Компоненты для поверхностного монтажа автоматически размещаются станком, наклеиваются на площадки, а затем припаиваются вместе с остальными составляющими. Компоненты для поверхностного монтажа, содержащие интегральные схемы малой и средней степени интеграции, можно заменить на печатной плате, используя описанные в
Многие цифровые системы содержат одну или более ИМС специального назначения с большой степенью интеграции. Они часто изготавливаются по технологии сверхбольших интегральных схем (СБИС) и имеют десятки входов и выходов. Для размещения столь многофункционального кристалла в относительно небольшом корпусе ИС приходится уменьшать расстояние между выводами и располагать их по всему периметру корпуса ИМС. Оба эти способа делают ручной ремонт неисправных деталей чрезвычайно трудным.
Для того чтобы обеспечить связь между многочисленными ИМС в системе, часто приходится располагать слои медных печатных проводников внутри слоев самой платы. Эти многослойные платы имеют сквозные металлизированные отверстия для связи в нужных точках. Поскольку соединения расположены в толще платы, невозможно визуально отследить соединения элементов, что ранее часто приходилось делать специалисту.
Еще один способ повышения плотности монтажа — объединение многочисленных плат модульной системы в одну. Это повышает надежность устройства в целом за счет устранения кабелей и разъемов — основных источников неисправностей — и использовать сборочную линию для изготовления одной системной печатной платы, вместо разнородных плат меньшего размера. Установка такой платы в корпус устройства гораздо проще и выгодней.
Однако во многих случаях обслуживание таких систем сложнее. Например, процесс локализации неисправности в прежних модульных системах часто заключался в последовательной замене определенных плат из системы, для того чтобы проверить, исчезнут ли признаки неисправности. Замену компонентов поверхностного монтажа часто невозможно выполнить вручную, вследствие ограниченных допусков на размещение деталей. Выводы настолько близко расположены друг к другу и их так много. Попытка сделать что-либо вручную чаще всего приводит к образованию перемычек из припоя между контактными площадками. Нередко фирмы-изготовители имеют автоматизированные ремонтные предприятия, которые могут повторно использовать печатные платы такого тина. Тогда специалисту, работающему непосредственно на объекте, остается убедиться в неисправности такой системной платы и отправить ее на замену или ремонт. Стоимость платы при замене обычно составляет небольшую часть стоимости новой платы. Во многих случаях система использует светодиодные индикаторы или коды ошибок какого-либо типа для помощи в поиске неисправностей. Как следствие, в данном случае специалист не нуждается в глубоком понимании, которое необходимо для обслуживания на уровне компонентов, однако профессионал должен быть оснащен соответствующим диагностическим оборудованием.
Электронные цифровые схемы могут работать много лет, если они находятся в условиях, предусмотренных техническими характеристиками. Полупроводниковые схемы ИМС не имеют ограниченных сроков службы, как их предшественники на вакуумных лампах. Однако если эти приборы подвергаются воздействию повышенной температуры в течение длительного периода, они преждевременно выйдут из строя. В цифровых системах, состоящих из множества плат, каждая их которых содержит несколько рядов ИМС, общее рассеяние энергии может составлять сотни Вт.