Корпускулярные свойства α-частиц (импульс, масса, заряд) особенно хорошо заметны вне ядра, например при движении их в камере Вильсона. Внутри ядра преобладают (то есть более заметны) волновые свойства α-частиц: частота и длина волны. Ясно, что длина волны α-частиц в ядре не может превышать размеров ядра: λ ≤ rο≈10-12 см, а их скорости движения примерно в сто раз меньше скорости света, поэтому частота их колебаний внутри ядра ν = υ/λ достигает значений ν≈4·1020 с-1. Наталкиваясь на стенки потенциального барьера, волны α-частиц, как правило, испытывают «полное внутреннее отражение», но иногда, с ничтожной вероятностью, все же проникают сквозь барьер — точно так же, как проникает свет через воздушный зазор, разделяющий два куска стекла. Чем больше энергия α-частиц в ядре, тем меньше ширина потенциального барьера, который ей необходимо преодолеть, и тем с большей вероятностью мы можем обнаружить ее вне ядра.
Вероятность проникновения α-частицы через потенциальный барьер равна
Тем, кто далек от математики, это выражение, вероятно, покажется слишком сложным. В действительности же оно немедленно следует из уравнения Шрёдингера. А если учесть, что с его помощью удается понять практически все особенности α-распада, то следует признать его даже слишком простым.
Эта вероятность чрезвычайно мала: например, для ядра радия она составляет лишь w≈3,3·10-32, но она все же не равна нулю, и это принципиально отличает квантовые объекты (α-частицы) от классических (магма). Каждую секунду α-частица подходит к стенке барьера ν≈4·1020 раз и каждый раз с вероятностью w≈3,3·10-32 может покинуть ядро, то есть каждое ядро радия каждую секунду может распасться с вероятностью
Λ=v∙w= 1,4·10-11 с-1.
Следовательно, среднее время жизни ядра радия τ=1/Λ = 7,4·1010с ≈ 2300 лет, а период полураспада радия T1/2= 0,7τ =1600 лет. В одном грамме радия содержится Nа=А=6·1023/226=2,7·1021 ядер радия, и каждую секунду из них распадается
(2,7·1021)·(1,4·10-11) = 3,7·1010 ядер.
Именно это число радиоактивных распадов в секунду условились принять за единицу радиоактивности и назвали ее Кюри — в память о выдающемся вкладе семьи Кюри в науку о радиоактивности.
Теперь, наконец, мы можем ответить на все вопросы о природе, причине и законах радиоактивности, которые мы задали в начале этой главы.
Почему α-частицы вылетают из ядра? Потому, что радиоактивные ядра нестабильны по своей природе, они, как и люди, уже в момент своего рождения обречены на смерть.
Чем объясняется моноэнергетичность вылетающих α-частиц? α-частица в ядре имеет строго определенную квантованную энергию, с которой она и движется, покинув ядро.
От чего зависит период полураспада ядер? Он определяется, в основном, энергией α-частиц: чем больше эта энергия, тем уже барьер, который ей необходимо преодолеть, тем больше вероятность просочиться сквозь него и тем меньше время жизни радиоактивного ядра. Зависимость эта очень сильная: при изменении энергии α-частиц всего в полтора раза их период полураспада изменяется в миллиарды раз (для урана-238 En=4,2 МэВ, T1/2=4,5·109 лет, для радия-226 En=4,8 МэВ, Τ1/2=1,6·103 лет, для радона-222 (эманация радия) En=5,5 МэВ, Т1/2 = 3,8 дня, для полония-218 Еп=6,0 МэВ, Τ1/2=3 мин, а для полония-214 Еп=7,7 МэВ, Т1/2=1,6·10-4 с). Зависимость между периодом полураспада ядер и энергией испускаемых α-частиц, известная как закон Гейгера — Нэттола, была обнаружена еще в 1909 г., но лишь 20 лет спустя получила удовлетворительное объяснение.
Чем определяется время и место распада радиоактивных ядер? Законами случая. Ядро — это микрообъект, подчиняющийся законам квантовой механики, поэтому при его описании понятие вероятности является основным. Можно достоверно предсказать среднее время жизни ядра и сколько в среднем ядер из большого их числа распадется в секунду. Но момент распада каждого отдельного ядра предсказать нельзя. Это — некорректно поставленный вопрос. Среднее время жизни ядра радия-226 τ = 2300 лет, но это совсем не означает, что ядро радия, которое только что образовалось при распаде тория-230, проживет именно столько: с равной вероятностью оно может распасться и в следующую секунду, и через миллион лет. Радиоактивные ядра можно уподобить людям, больным неизлечимой болезнью: рано или поздно они умирают. Однако в отличие от людей, смертность которых с возрастом увеличивается, радиоактивные ядра не стареют: вероятность их распада не зависит от времени, которое они «прожили» к моменту распада.
На эту особенность радиоактивных явлений обратил внимание еще в 1905 г. австрийский физик Эгон Швейдлер (1873—1948). По существу, это было первое свидетельство о квантовом характере внутриядерных процессов, хотя глубокий смысл наблюдения Швейдлера стал ясным только четверть века спустя.