В то время многим стало ясно, что наука больше не защищена «башней из слоновой кости» и отныне ей придется жить у всех на виду, под пристальным вниманием репортеров и бизнесменов, генералов и политиков. Ученые с обостренным чувством нравственных ценностей уже тогда пытались отделить инстинкт познания от страха перед его неконтролируемыми последствиями. Тридцать лет спустя эта дилемма обернется для ученых трагедией, и многие из них вслед за Отто Ганом захотят сказать после Хиросимы и Нагасаки: «Я не имею к этому никакого отношения!»
По окончании войны ученые стали возвращаться к прерванным исследованиям. 1919 г. навсегда войдет в историю науки: в этом году Эрнест Резерфорд впервые на Земле осуществил искусственное превращение элементов. Сама возможность таких превращений в то время уже не казалась удивительной: многочисленные примеры «трансмутации элементов» можно было наблюдать в явлениях радиоактивности. Но именно наблюдать: тепло и холод, электрические и магнитные поля, давление и химические реакции ни на йоту не изменяли процесс радиоактивного распада. Было нечто величественное в том равнодушии, с которым природа отвергала все попытки человека нарушить ход ее естественных процессов. Можно понять поэтому тот интерес и возбуждение, с которым ученое сообщество встретило опыты Резерфорда.
В 1919 г. Эрнесту Резерфорду исполнилось 48 лет, он был лауреатом Нобелевской премии, директором знаменитой лаборатории Кавендиша, членом почти всех академий мира, признанным авторитетом в атомной и ядерной физике; королева Англии за научные заслуги пожаловала ему титул лорда, вокруг него выросла могучая школа учеников, многие из которых впоследствии сами станут нобелевскими лауреатами. Но как и двадцать лет назад, во времена своей молодости, он по-прежнему любил сидеть за микроскопом и экспериментировать с α-частицами.
В этот раз, продолжая довоенные измерения своего ассистента Марсдена, он обнаружил, что при прохождении α-частиц через обыкновенный воздух возникают какие-то новые частицы, пробеги которых значительно больше пробегов исходных α-частиц. Довольно скоро Резерфорд выяснил, что вторичные частицы — это протоны, и возникают они при столкновениях α-частиц с ядрами азота. Но как? Резерфорд допускал две возможности: либо, сталкиваясь с ядром азота, α-частица выбивает из него протон, в результате чего оно превращается в ядро углерода:
α+147N→ α + 136C + p,
либо же α-частица застревает в ядре азота и превращает его в ядро кислорода:
α + 147N→178О + р.
Шесть лет спустя сотрудник Резерфорда Патрик Мейнард Стюарт Блэккет (1897—1974) наблюдал эту
В последующие четыре года Резерфорд совместно с Джеймсом Чэдвиком (1891 — 1974) установил, что при обстреле α-частицами по крайней мере еще десяток элементов — вплоть до калия — вступают в ядерные реакции. Но на этом возможности α-частиц были исчерпаны: заряд калия равен 19, заряд α-частицы — 2, и ее энергии уже не хватало, чтобы преодолеть отталкивание ядер с зарядами, большими 20. Заряд протона вдвое меньше, поэтому в качестве снаряда для обстрела ядер он предпочтительнее α-частиц. Но где взять протоны больших энергий? Радиоактивных элементов, испускающих протоны, в природе не существует.
Тогда-то впервые и возникла идея
Кокрофт и Уолтон уже в 1932 г. осуществили в лаборатории Резерфорда первую ядерную реакцию, вызванную ускоренными протонами. Обстреливая мишень из лития протонами, ускоренными до энергии 0,2 МэВ, они обнаружили, что примерно один протон из миллиарда расщеплял ядро лития на две α-частицы, которые с огромной энергией по 8,5 МэВ каждая разлетались в противоположные стороны:
Эта ядерная реакция стала столь же знаменитой, как и первая реакция Резерфорда по превращению азота в кислород. Сравнивая энергии в начале и в конце этой реакции (0,2 и 17 МэВ), в пору усомниться в законе сохранения энергии, если, конечно, не принимать во внимание формулу Эйнштейна
до реакции после реакции