Читаем Под знаком кванта полностью

Всякое измерение есть взаимодействие прибора и объекта, который мы изучаем. А всякое взаимодействие нарушает первоначальное состояние и прибора, и объекта — так что в результате измерения мы получаем о явлении сведения, которые искажены вмешательством прибора. Классическая физика предполагала, что все подобные искажения можно учесть и по результатам измерения восстановить «истинное» состояние объекта, независимое от измерений. Гейзенберг показал, что такое предположение есть заблуждение: в атомной физике «явление» и «наблюдение» неотделимы друг от друга. По существу, «наблюдение» — тоже явление, и далеко не самое простое.

Как и многое в квантовой механике, такое утверждение непривычно и вызывает бессознательный протест. И все же попытаемся его понять или хотя бы почувствовать.

Ежедневный опыт убеждает нас: чем меньше объект, который мы исследуем, тем легче нарушить его состояние. Ничего меньше квантовых объектов — атома, электрона, ядра — мы в природе не знаем. Определить их свойства усилием воли мы не можем. В конце концов, мы вынуждены измерять свойства этих объектов с помощью их самих. В таких условиях прибор неотличим от объекта.

Но почему нельзя добиться, чтобы в процессе измерения один атомный объект лишь незначительно влиял на другой?

Дело в том, что оба они — и прибор, и объект — находятся в одном и том же квантовом мире и поэтому их взаимодействие подчиняется квантовым законам. А главная особенность квантовых явлений — их дискретность. В квантовом мире ничего не бывает чуть-чуть — взаимодействия там происхо

дят только квантом: или — все, или — ничего. Мы не можем как угодно слабо воздействовать на квантовую систему — до определенного момента она этого воздействия вообще не почувствует. Но коль скоро воздействие выросло настолько, что система готова его воспринять,—

она скачком переходит в новое (тоже квантовое) состояние или же просто гибнет.

Процесс наблюдения в квантовой механике напоминает скорее вкус, чем зрение. «Для того чтобы узнать свойства пудинга, его необходимо съесть»,— любили повторять создатели квантовой механики. И подобно тому как, съев однажды пудинг, мы не в состоянии еще раз проверить свое впечатление о его достоинствах, мы не можем беспредельно уточнять наши сведения о квантовой системе: ее разрушит, как правило, уже первое измерение. Гейзенберг не только понял впервые этот суровый факт, но и сумел записать его на строгом языке формул.

Соотношение неопределенностей — одна из самых важных формул квантовой механики, в ней как бы сконцентрированы ее самые существенные особенности. После его открытия пришлось пересмотреть не только основы физики, но и теорию познания. Этот последний шаг оказался под силу лишь Нильсу Бору, который счастливо сочетал в себе могучий интеллект настоящего ученого и философский склад ума истинного мыслителя. В свое время он создал систему образов квантовой механики, теперь, четырнадцать лет спустя, он тщательно оттачивал систему ее понятий. После Бора стало ясно, что и соотношение неопределенностей, и корпускулярно-волновой дуализм — лишь частные проявления более общего принципа — принципа дополнительности.

<p><emphasis>ПРИНЦИП . ДОПОЛНИТЕЛЬНОСТИ</emphasis></p>

Принцип, который Бор назвал дополнительностью,— одна из самых глубоких философских и естественнонаучных идей нашего времени, с которой можно сравнить лишь такие идеи, как принцип относительности или представления о физическом поле. Его общность не позволяет свести его к какому-либо одному утверждению — им надо овладевать постепенно, на конкретных примерах. Проще всего (так поступил в свое время и Бор) начать с анализа процесса измерения импульса р и координаты х атомного объекта.

Нильс Бор обратил внимание на очень простой и понятный факт: координату и импульс атомной частицы нельзя измерить не только одновременно, но и с помощью одного и того же прибора. В самом деле, чтобы измерить импульс р атомной частицы и при этом не очень сильно его изменить, необходим очень легкий подвижный «прибор». Но именно эта подвиж-

157 ность приводит к тому, что его положение весьма неопределенно.

Когда мы говорим в микрофон, то звуковые волны нашего голоса преобразуются там в колебания мембраны. Чем легче и подвижнее мембрана, тем точнее она следует за колебаниями воздуха. Но тем труднее определить ее положение в каждый момент времени. Для измерения координаты х мы должны поэтому взять другой, очень массивный прибор, который не шелохнется при попадании в него частицы. Но как бы ни изменялся в этом случае ее импульс, мы этого даже не заметим. Это — простейшая экспериментальная иллюстрация к соотношению неопределенностей Гейзенберга: нельзя в одном и том же опыте определить обе характеристики атомного объекта — координату х и импульс р. Для этого необходимы два измерения и два принципиально разных прибора, свойства которых дополнительны друг другу.

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука