Читаем Под знаком кванта полностью

Движение — одно из самых сложных понятий физики. С ним воображение вольно связывать самые разные образы — от шелеста листьев до бегущего носорога. Однако даже самые фантастические картины движения содержат нечто общее: перемещение одних объектов относительно других с течением времени. После введения понятия траектории понятие движения становится более определенным, вероятно потому, что при этом оно вновь приобретает черты наглядности. Условия развития и воспитания человека таковы, что ему трудно вообразить иное движение, кроме механического, поэтому и все другие движения он пытается осмыслить также с помощью понятия о траектории. Это ему, естественно, не удается, например при попытке осмыслить электрические движения. Можно, конечно, представить себе высоковольтную линию передач или междугородний телефон и вообразить, что провода и есть «траектория» электрических сигналов, однако реального смысла такие образы не имеют: электромагнитные волны — это не жидкость, текущая по проводам.

Определить понятие движения в квантовой механике еще сложнее. Более того: именно тот день, когда его удалось определить непротиворечиво, можно считать днем рождения современной квантовой механики.

НО

<p><emphasis>МАТРИЧНАЯ</emphasis></p><p><emphasis>МЕХАНИКА ГЕЙЗЕНБЕРГА</emphasis></p>

Когда прошел восторг первых успехов теории Бора, все вдруг трезво осознали простую истину: схема Бора противоречива. От этого факта некуда было укрыться, и им объясняется тогдашний пессимизм Эйнштейна, равно как и отчаяние Паули. Физики вновь и вновь убеждались, что электрон при движении в атоме не подчиняется законам электродинамики: он не падает на ядро и даже не излучает, если атом не возбужден. Все это было настолько необычно, что не укладывалось в голове: электрон, который «произошел» от электродинамики, вдруг вышел из-под контроля ее законов. При любой попытке найти логический выход из этого порочного круга ученые всегда приходили к выводу: атом Бора существовать не может.

Однако природе нет дела до наших логических построений; атомы устойчивы вопреки всякой логике и, насколько мы знаем, существуют вечно. А если законы электродинамики не могут объяснить устойчивость атома — тем хуже для них, значит, движение электрона в атоме подчиняется каким-то другим законам. Впоследствии оказалось, что постулаты Бора — это удачная догадка о тогда еще не известных, но фундаментальных законах, которые чуть нозже назовут законами квантовой механики.

Квантовая механика — это наука о движении электронов в атоме. Она первоначально так и называлась: атомная механика. А Вернер Карл Гейзенберг — первый из тех, кому выпало счастье эту науку создавать.

Весной 1925 г., по приглашению Бора, Гейзенберг приехал в Копенгаген из Гёттингена, где он работал ассистентом Макса Борна после окончания университета в Мюнхене под руководством Зоммерфельда. В Дании он сразу же попал в обстановку научных споров, в среду людей, для которых квантовая физика стала главным делом жизни. Полгода прошли в работе и бесконечных дискуссиях все о том же: почему электрон — объект электродинамики — не подчиняется в атоме ее законам, в чем причина удивительной силы нелогичных постулатов Бора и, наконец, что означает в этом случае само понятие «движение»?

Напряженные размышления Гейзенберга разрешились неожиданной догадкой, которая мало-помалу сменилась уверенностью: движение электрона в атоме нельзя представлять себе как движение маленького шарика по траек-

тории. Нельзя, потому что электрон не шарик, а нечто более изощренное, и проследить за движением этого «нечто» столь же подробно, как за движением бильярдного шара, невозможно. Поэтому, пытаясь определить траекторию электрона в атоме, мы задаем природе незаконные вопросы. Вроде тех, которые задавали в древности: «На чем держится Земля?», «Где у нее край?», а немного позднее: «Где у нее верх и низ?»

Гейзенберг утверждал: уравнения, с помощью которых мы хотим описать движение в атоме, не должны содержать никаких величин, кроме тех, которые можно измерить на опыте. Из опытов следовало, что атом устойчив, состоит из ядра и электронов и может излучать, если его вывести из состояния равновесия. Это излучение имеет строго определенную длину волны и, если верить Бору, возникает при перескоке электрона с одной стационарной орбиты на другую. При этом схема Бора ничего не говорила о том, что происходит с электроном в момент скачка, так сказать, «в полете» между двумя стационарными состояниями. А все, и Гейзенберг в том числе, по привычке добивались ответа именно на этот вопрос. Но в какой-то момент ему стало ясно: электрон не бывает «между» стационарными состояниями, такого свойства у него просто нет!

А что есть? Есть нечто, чему он не знал пока даже названия, но был убежден: оно должно зависеть только от того, куда перешел электрон и откуда он пришел.

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука