Читаем Под знаком кванта полностью

общая энергия морских волн. Но энергия волн равномерно распределена по всему побережью, и нужны века, чтобы мы увидели результаты их ежедневной работы. По сравнению с этой работой энергия снаряда ничтожна, зато она сосредоточена в малом объеме и выделяется мгновенно. Еели к тому же снаряд достаточно велик, он разрушит утес. Последнее важно: действительно, все свойства снаряда, кроме размеров, присущи и пуле, однако сокрушить скалу ей не под силу.

Примерно так рассуждал Эйнштейн, когда предложил свое объяснение явления фотоэффекта. Он знал об открытии и сомнениях Планка, но для Эйнштейна с его непредвзятой манерой мышления гипотеза о квантах света не казалась столь ужасной, как самому Планку. Поэтому он был первый, кто не только поверил в нее, но и применил для объяснения новых опытов. Эйнштейн утверждал: свет не только испускается квантами, как того требовала гипотеза Планка, но и распространяется так же — квантами. (Кстати, сам термин «квант» принадлежит ему же: Планк говорил об «элементах энергии»). Поэтому свет, падающий на поверхность металла, подобен не морским волнам, а артиллерийским снарядам. Причем каждый такой снаряд-квант (в 1926 г. Дж. Льюис назовет их фотонами) может выбить из атома только один электрон.

Согласно Планку, энергия кванта равна hv. По мысли Эйнштейна, какая-то часть ее (назовем ее Р) расходуется на то, чтобы вырвать электрон из атома, а остальная часть — на то, чтобы разогнать его до скорости у, то есть сообщить ему кинетическую энергию T = mv2/2. Оба эти утверждения можно коротко записать в виде простого уравнения

, п 1 ту2

ftv=p+

Стоит принять эту гипотезу — и явление фотоэффекта проясняется. Действительно, пока снаряды малы (красный свет), они не могут выбить электрон из атома (ftv Р). Но по-прежнему энергия каждого «снаряда-кванта» будет зависеть только от их величины (то есть от их частоты v), а не от их числа.

Шестнадцать лет спустя классическую простоту уравнения Эйнштейна Шведская академия наук отметит Нобелевской премией. Но в 1905 г., когда уравнение было написано впервые, на него ополчились все, даже Планк. Он высоко ценил Эйнштейна, искренне хотел ему помочь и потому, убеждая прусское министерство просвещения пригласить его на работу в Берлин, просил «не слишком сильно ставить ему в упрек» гипотезу относительно явлений фотоэффекта.

Планка можно понять: совсем недавно вопреки общепринятым традициям (и даже своему желанию) он ввел в физику квант действия h. Лишь постепенно пришло к нему осознание неизбежности этого шага. Даже в 1909 г. он признавался Эйнштейну: «Я еще плохо верю в реальность световых квант». Однако дело было сделано: «...Планк посадил в ухо физикам блоху»,— говорил Эйнштейн двадцать лет спустя, и она не давала им покоя, хотя они и пытались ее не замечать. Во всяком случае, Планк постарался ввести квант действия так, чтобы не пострадала волновая оптика — здание чрезвычайной красоты, созданное в течение двух столетий. Поэтому, согласно Планку, свет только испускается квантами, но распространяется по-прежнему, как волна: лишь в этом случае удавалось сохранить все результаты волновой оптики.

А Эйнштейн поступал так, как будто до него вообще не существовало физики, или по крайней мере как человек, ничего не знающий об истинной природе света. Здесь сказалась замечательная особенность Эйнштейна: в совершенстве владея логикой, он больше доверял интуиции и фактам, причем случайных фактов в физике для него не существовало. Поэтому в явлениях фотоэффекта он видел не досадное исключение из правил волновой оптики, а сигнал природы о существовании еще неизвестных, но глубоких законов. Так уж случилось, что исторически сначала были изучены волновые свойства света. Только в явлениях фотоэффекта физики впервые столкнулись с его корпускулярными свойствами. У большинства из них инерция мышления была настолько велика, что они отказались этому верить. «Не может быть!» — повторяли они подобно фермеру, впервые в жизни увидевшему жирафа.

Эйнштейн, конечно, знал историю оптики не хуже других. Но его независимый ум равнодушно относился к ее солидному авторитету. Все прежние заслуги оптики для него не имели значения, если они не могли объяснить единственный, но бесспорный опыт. Он глубоко, религиозно, верил в единство природы, и один такой опыт значил для него не меньше, чем вся история оптики. А его честность не позволила ему пройти мимо неугодного факта.

В науке по-настоящему опасны только неверные опыты: опытам принято верить. Но любую гипотезу — какой бы привлекательной она ни была — всегда тщательно проверяют. Даже если она окажется ложной, опыты, которые ее опровергли, часто приводят к результатам более ценным, чем сама гипотеза. Проверили и гипотезу Эйнштейна — она оказалась истинной.

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука