Целью науки фактически служит открытие наиболее фундаментальных законов, и эти законы должны быть органичны, просты, красивы и логичны. Все основные уравнения с виду довольно просты и по мере развития науки становятся проще. В основе птолемеевской космологии лежало представление о мире, в котором Земля являлась центром Вселенной. Описание такого мира требовало построения сложных математических конструкций. Однако стоило лишь отказаться от идеи, что Земля в центре, и описание стало значительно короче и стройнее. Краткость и простота математического описания – верный знак того, что оно правильно отражает красоту и гармонию самой Вселенной.
Сам вид уравнений
Возникает вопрос: можно ли вывести все физические уравнения из единственного требования красоты и симметрии? Возможно, ответ на этот вопрос положителен, но на современном уровне понимания проблемы одной только симметрии явно недостаточно. Дело в том, что в существующих физических теориях во все уравнения входят константы, такие как заряд или масса электрона. Если эти параметры изменить, вид уравнения – а значит, его красота и симметричность – не изменится. Но как повлияет такая процедура на законы физики, на сам вид Вселенной, в которой мы живем? На этот вопрос есть два ответа: либо ничего не поменяется, либо Вселенная изменится до неузнаваемости. Я хочу продемонстрировать, что правильный ответ второй: Вселенная станет неузнаваемой, если лишь чуть-чуть подправить константы в уравнениях.
Точная настройка мира
Начнем с числа измерений нашего мира, которое тоже можно рассматривать как фундаментальную константу. Все мы хорошо представляем, что наше пространство трехмерно: для того чтобы точно задать положение тела, надо знать три числа – скажем, широту, долготу и высоту относительно Земли. Другим фактом, отражающим трехмерность нашего пространства, является то, что через одну точку можно провести ровно три взаимно ортогональные прямые. Строго говоря, необходимо также задать момент времени, когда тело находилось в данной точке, – тогда мы приходим к понятию четырехмерного пространства-времени. Но в дальнейшем мы не будем обращать внимания на эту тонкость и будем говорить о числе пространственных измерений.
Еще древние греки заметили, что геометрия двумерного и трехмерного пространств различна. Так, в двух измерениях существует бесконечное количество правильных многоугольников, а в трехмерном мире – всего пять правильных многогранников[8]. Из этого факта они делали вывод о красоте и гармоничности трехмерного пространства, а в красоте древние греки знали толк. Возникает вопрос, а что было бы (кроме отсутствия гармонии в понимании древних греков), если бы наше пространство не являлось трехмерным? Дело в том, что законы физики, то есть уравнения, о которых говорилось выше, без труда переносятся на любое число измерений. Более того, с одной стороны, справедливость этих уравнений проверена экспериментально в двумерных системах, таких как графен. А с другой стороны, некоторые современные теории, например теория суперструн или М-теория, могут быть непротиворечивым образом сформулированы в десяти– или одиннадцатимерном пространстве-времени.
«Уравнения физики красивы хотя бы потому, что они короткие. Уравнение Эйнштейна, занимающее одну строчку, описывает все в нашей Вселенной».