Чтобы не выполнять эту операцию 8 раз, суммирование завершается, когда множитель становится равным нулю. Отсюда следует, что время выполнения подпрограммы является переменной величиной, зависящей от значения множителя. Наихудшему случаю соответствует значение множителя, равное 255 (b’11111111’) — При этом выполнение подпрограммы занимает 142 машинных цикла, включая и 2 машинных цикла, затрачиваемых на исполнение команды call[96].
При использовании этой подпрограммы вызывающая программа копирует множимое в регистр h’20’, а множитель — в регистр h’21’. При возврате из подпрограммы 16-битное произведение можно прочитать из регистров h’2E’:h’2F’. Предположим, для примера, что нам необходимо перемножить байты, находящиеся в регистрах h’42’ и h’46’.
movf h’4’2,w; Берем 1-е число
movwf h’20’; и копируем в MULTIPLIER
movf h’46’,w; Берем 2-е число
movwf h’21’; и копируем в MULTIPLICAND
call MUL;Перемножаем! После возврата результат — в регистрах h’2Е’:h’2F1
Большинство микроконтроллеров и микропроцессоров имеют
Языки высокого уровня, такие как Си (см. главу 9), обычно реализуют именно такую модель стека. При этом объем создаваемых и передаваемых переменных ограничивается только объемом памяти данных, которая может быть выделена под этот стек.
Обратной стороной такого решения является необходимость использования дополнительных ресурсов ЦПУ для создания стека и управления им. Обычно используется один или более отдельных регистров адреса или указателей стека, а для эффективной работы со стеком необходимы режимы адресации, облегчающие доступ к переменным в стеке. И даже в этом случае результат обычно медленнее, а размер кода больше, чем в моделях, использующих фиксированное распределение памяти.
Ядро микроконтроллеров PIC среднего уровня в явном виде программный стек не поддерживает[97]. Однако такую структуру можно эмулировать, используя косвенную адресацию на базе регистров FSR и INDF (см. стр. 123). Поскольку регистр указателя стека, как таковой, отсутствует, в приведенном ниже коде для этих целей мы задействовали регистр данных h’40’, назвав его PSP.
Программист должен также зарезервировать участок памяти данных для хранения различных стековых фреймов. Мы решили, что вершина стека (Top Of Stack — TOS) будет располагаться по адресу h’50’. Если не использовать регистры из диапазона адресов h’50’…h’70’, то для нашего стека будет доступно 48 байт. В микроконтроллерах PIC16F62X этот блок памяти отображен на все банки. Поскольку адреса возврата из подпрограмм сохраняются в аппаратном стеке, наш программный стек может целиком использоваться для передачи параметров и хранения локальных переменных подпрограмм. Инициализация стека осуществляется записью константы h’50’, названной TOS, в регистр указателя PSP.
В качестве примера разберем вариант подпрограммы умножения, ориентированный на использование стека (Программа 6.7). Структура программного стека для данного случая показана на Рис. 6.10. В соответствии с рисунком, для вызова этой подпрограммы необходимо выполнить следующие действия:
1. Поместить множимое и множитель в стековый фрейм и вызвать подпрограмму.
2. Обнулить следующий байт фрейма, который будет использоваться в качестве дополнительного байта множимого.
3. Обнулить два следующих байта для инициализации будущего 2-байтного произведения.
В приведенном ниже (на следующей странице) фрагменте кода показана реализация 1-го пункта:
а) Передать содержимое регистра PSP в FSR. В результате FSR будет указывать на вершину нового стекового фрейма. Если это подпрограмма первого уровня (т. е. не вложенная в другую подпрограмму), то в этом регистре в нашем случае будет значение h’50’.
б) Скопировать множимое из памяти (предполагаем, что, как и в предыдущем примере, оно находится в регистре h’46’) в W, а затем во фрейм, используя в качестве указателя регистр FSR. Операция занесения множимого в стек завершается декрементированием регистра FSR.
в) Аналогичным образом поместить в стек множитель.
г) Вызвать подпрограмму.
Рис. 6.10.