Читаем PIC-микроконтроллеры. Все, что вам необходимо знать полностью

При изменении выходного сигнала компаратора устанавливается флаг прерывания от компаратора CMIF, расположенный у микроконтроллера PIC16F687XA в регистре PIR[2], а при установленном бите маски CMIE (Р1Е2[6] для PIC16F87XA) будет сгенерировано прерывание от компаратора, если, разумеется, бит глобального разрешения прерываний также установлен в 1. Поскольку эта линия прерывания используется обоими компараторами, программа должна хранить информацию о предыдущих значениях битов C1OUT и C2OUT, чтобы иметь возможность определить, состояние какого из компараторов действительно изменилось. Эта информация может обновляться в обработчике прерывания. После чтения регистра CM CON несоответствие между новым и предыдущим состояниями компаратора, вызвавшее установку флага прерывания, будет устранено — точно так же, как и в случае прерывания по изменению состояния выводов порта В, описанного на стр. 347. Только после выполнения этой операции можно сбрасывать флаг CMIF. Если режим компаратора изменяется «на лету», то перед этим изменением следует запретить прерывание от компаратора. Выждав после изменения режима не менее 10 мкс (в течение этого времени стабилизируются значения сигналов), регистр CMCON необходимо повторно считать для сброса возможного несоответствия, а затем сбросить флаг CMIF перед повторным разрешением работы системы прерываний.

Поскольку модуль компаратора не использует системный тактовый сигнал, активный компаратор можно задействовать для вывода микроконтроллера из «спящего» режима при переходе внешнего сигнала через пороговое значение Vref, что вызывает установку флага CMIF. После «пробуждения» микроконтроллер должен убрать несоответствие (прочитать регистр CMCON) и сбросить флаг CMIF в теле основной программы (после команды sleep) или в обработчике прерывания, если было разрешено прерывание от компаратора.

Необходимо отметить, что включенный компаратор потребляет ток, который намного больше базового значения потребления в «спящем» режиме. Например, типичный ток потребления микроконтроллеров PIC12F629/675 в «спящем» режиме составляет 2.9 нА при напряжении 5 В (995 нА mах), а модуль компаратора в среднем потребляет 11.5 мкА (16 мкА mах). Так что если компараторы не используются во время «сна» микроконтроллера, то они должны быть выключены.

В режиме b’110’ каждый из компараторов может контролировать один из двух сигналов, определяемый состоянием бита входного ключа компаратора CIS (CMCON[3]), который при включении питания сбрасывается в 0. Неинвертирующие входы обоих компараторов в этом режиме подключены к внутреннему источнику опорного напряжения, формируемого модулем опорного напряжения компаратора (Comparator Voltage Reference — CVR).

Этот модуль CVR имеется во всех моделях микроконтроллеров с модулем компаратора. Как видно из Рис. 14.7, данный модуль представляет собой аналоговый мультиплексор с подключенной к нему резистивной цепочкой, на выходе которого в соответствии со значениями битов CVR[3:0] регистра управления CVRCON (CVRCON[3:0]) может быть сформировано одно из 16 различных напряжений. Модуль опорного напряжения включается при установке бита разрешения CVREN (CVRCON[7]). При этом цепочка последовательно соединенных резисторов, номинальное сопротивление каждого из которых равно 2 кОм, подключается к шине питания VDD.

Рис. 14.7.Модуль опорного напряжения компаратора

В распоряжении пользователя имеется два диапазона опорного напряжения. Конкретный диапазон задается битом CVRR (CVRCON[5]), который подключает или отключает дополнительный резистор сопротивлением 8R в конец цепочки. Обозначив 4-битное значение CVR[3:0] как я, получим:

где n изменяется в диапазоне от 0 до 15.

Погрешность установки напряжения составляет 1/2 шага, но в реальности абсолютное значение выходного напряжения модуля прямо пропорционально напряжению питания, величина которого обычно задается не слишком точно. Кроме того, значение VDD может изменяться при уходе напряжения источника питания или батареи из-за температуры или тока нагрузки. Даже любая помеха по шине питания отразится на опорном напряжении, хотя действие помех в какой-то степени можно ослабить посредством фильтрующих конденсаторов и корректной разводкой линий питания. Поэтому в тех случаях, когда требуется точное значение напряжения, часто используются внешние прецизионные источники опорного напряжения. В частности, при работе модуля компаратора в режиме Ь’100’ этот источник подключается к выводу RA3 (см. Рис. 14.20).

Предположим, что мы собираемся получить пороговое напряжение величиной 3.4 В (Рис. 14.5) при VDD = 5 В. Нам придется использовать верхний диапазон, т. е. CVRR = 0. Вычислим значение битов CVR[3:0]:

5 х (0.25 + n/32) = 3.4

0.25 + n/32 = 3.4/5

n = (3.4/5 — 0.25) х 32 = 13.76

Таким образом, наиболее близкое к заданному напряжение получится при n = 14. Задав CVR[3:0] = b’1110’, получим Vref = 3.4375 В.

Перейти на страницу:

Все книги серии Программируемые системы

PIC-микроконтроллеры. Все, что вам необходимо знать
PIC-микроконтроллеры. Все, что вам необходимо знать

Данная книга представляет собой исчерпывающее руководство по микроконтроллерам семейства PIC компании Microchip, являющегося промышленным стандартом в области встраиваемых цифровых устройств. В книге подробно описывается архитектура и система команд 8-битных микроконтроллеров PIC, на конкретных примерах изучается работа их периферийных модулей.В первой части излагаются основы цифровой схемотехники, математической логики и архитектуры вычислительных систем. Вторая часть посвящена различным аспектам программирования PIC-микроконтроллеров среднего уровня: описывается набор команд, рассматривается написание программ на ассемблере и языке высокого уровня (Си), а также поддержка подпрограмм и прерываний. В третьей части изучаются аппаратные аспекты взаимодействия микроконтроллера с окружающим миром и обработки прерываний. Рассматриваются такие вопросы, как параллельный и последовательный ввод/вывод данных, временные соотношения, обработка аналоговых сигналов и использование EEPROM. В заключение приводится пример разработки реального устройства. На этом примере также демонстрируются простейшие методики отладки и тестирования, применяемые при разработке реальных устройств.Книга рассчитана на самый широкий круг читателей — от любителей до инженеров, при этом для понимания содержащегося в ней материала вовсе не требуется каких-то специальных знаний в области программирования, электроники или цифровой схемотехники. Эта книга будет также полезна студентам, обучающимся по специальностям «Радиоэлектроника» и «Вычислительная техника», которые смогут использовать ее в качестве учебного пособия при прослушивании соответствующих курсов или выполнении курсовых проектов.

Сид Катцен

Радиоэлектроника

Похожие книги

Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки
Электроника для начинающих
Электроника для начинающих

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию для защиты от проникновения в дом, елочные огни, электронные украшения для одежды, устройство преобразования звука, кодовый замок, автономную роботизированную тележку и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий.Для начинающих радиолюбителей

Паоло Аливерти , Чарльз Платт

Радиоэлектроника / Технические науки
Искусство схемотехники. Том 3 (Изд.4-е)
Искусство схемотехники. Том 3 (Изд.4-е)

Широко известная читателю по предыдущим изданиям монография известных американских специалистов посвящена быстро развивающимся областям электроники. В ней приведены наиболее интересные технические решения, а также анализируются ошибки разработчиков аппаратуры: внимание читателя сосредотачивается на тонких аспектах проектирования и применения электронных схем. На русском языке издается в трех томах. Том 3 содержит сведения о микропроцессорах, радиотехнических схемах, методах измерения и обработки сигналов, принципах конструирования аппаратуры и проектирования маломощных устройств, а также обширные приложения. Для специалистов в области электроники, автоматики, вычислительной техники, а также студентов соответствующих специальностей вузов и техникумов.

Пауль Хоровиц , Уинфилд Хилл

Техника / Радиоэлектроника