Читаем Пятьсот двадцать головоломок полностью

14. Загадочное наследство.Некто завещал распорядиться суммой денег, которая была немного меньше 1500 долларов, следующим образом. Пятеро его детей и нотариус получили такие суммы, что квадратный корень из доли старшего сына, половина доли второго сына, доля третьего сына, уменьшенная на 2 доллара, доля четвертого сына плюс 2 доллара, удвоенная доля дочери и квадрат гонорара нотариуса равнялись между собой. Все наследники и нотариус получили по целому числу долларов, причем на выплату долей наследства и гонорара нотариусу ушли все деньги. Какая сумма была оставлена в наследство?

15. Раздел наследства.Один человек оставил наследство в 100 долларов, которое надо было поделить между его сыновьями Альфредом и Бенджамином. Если треть доли Альфреда вычесть из четверти доли Бенджамина, то останется 11 долларов. Чему равна доля каждого сына?

16. Новый компаньон.Два компаньона Смаг и Вильямсон решили взять себе третьего — мистера Роджерса. Смаг вложил в дело в 1 1/2 раза больший капитал, чем Вильямсон. Роджерс должен внести 2500 долларов, которые следует разделить между двумя другими компаньонами так, чтобы паи всех трех компаньонов стали после этого равны между собой. Как следует разделить сумму, внесенную Роджерсом?

17. Карманные деньги.

— Когда сегодня утром я пришел на вокзал, — рассказывал в своем клубе Гарольд Томпкинс, — то обнаружил, что у меня с собой мало денег. Половину их я истратил на билет и купил на 5 центов конфет, а половину того, что у меня оставалось, да еще 10 центов потратил на газету, выйдя из поезда. Затем половина оставшихся денег ушла на автобус, а 15 центов я дал нищему, который стоит у дверей клуба. Поэтому сейчас у меня осталось только 5 центов. Сколько денег я захватил с собой из дому?

18. Раздача денег.Девять приятелей А, В, С, D, Е, F, G, Н, К,собравшись как-то раз, чтобы вместе провести вечер, проделали следующее. Сначала Авручил каждому из остальных восьми человек столько денег, сколько у того было. Затем то же самое проделали В, Си т. д. до Квключительно. После этого оказалось, что у всех девяти человек денег стало поровну.

Сумеете ли вы найти наименьшую сумму в центах, которая могла быть у каждого из участников вечера первоначально?

19. Снижение цен.

— Меня часто озадачивает, — сказал полковник Крэкхэм, — удивительная система снижения цен, с которой порой приходится сталкиваться, и я все пытаюсь понять ее закономерность. Например, два года назад один человек предлагал мне мотоцикл за 1024 доллара. Год спустя он сбавил цену до 640 долларов, немного позже он просил уже только 400 долларов, а на прошлой неделе готов был продать его всего лишь за 250 долларов. Когда он снизит цену в следующий раз, я куплю этот мотоцикл. Сколько мне придется заплатить после очередного снижения?

20. Лошади и волы.Торговец скотом купил некоторое количество лошадей по 344 доллара и некоторое количество волов по 265 долларов. Он обнаружил, что все лошади обошлись ему на 33 доллара дороже, чем волы. Какое наименьшее количество лошадей и волов он мог купить при этих условиях?

21. Индюки.Один фермер купил партию индюков, которая стоила 60 долларов. Оставив себе 15 птиц, фермер продал остальных индюков за 54 доллара. При этом он получил по 10 центов прибыли с каждой птицы. Сколько он купил индюков?

22. Несчастный бакалейщик.Один бакалейщик, владелец маленькой лавочки, решил отложить на черный день небольшую сумму денег — все в долларовых купюрах и в монетах по половине и по четверти доллара. Всю эту сумму он разложил по 8 мешкам, причем так, что в каждом мешке было одинаковое число бумажных долларов и монет каждого достоинства. Однажды вечером бакалейщик решил переложить все эти деньги в 7 мешков так, чтобы во всех мешках бумажных купюр и монет каждого достоинства по-прежнему было поровну. На следующий вечер он подобным же образом переложил все деньги в 6 мешков.

Затем несчастный безумец попытался переложить все в 5 мешков, но после нескольких часов упорного труда в совершенном изнеможении, так и не осуществив своего замысла, скончался, горько оплакиваемый соседями. Какова наименьшая из тех сумм, которые бакалейщик мог отложить на черный день?

23. Утерянный цент.Это старинная задача, которая и поныне способна многих поставить в тупик. Две торговки продавали яблоки, одна по три, а другая по две штуки на цент. На некоторое время им пришлось отлучиться. У каждой еще оставалось по 30 непроданных яблок, которые они доверили своей подруге, чтобы та продала их по 2 цента за пять штук. Если бы торговки успели продать оставшиеся яблоки сами, то выручили бы за них 25 центов, а так они смогли выручить лишь 24 цента. «Куда же, — спросите вы, — девался 1 цент? Ведь продавать по три яблока на цент и по два яблока на цент — это все равно, что на 2 цента продавать по пять яблок».

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное