Поняв, что судьба навязала ему карьеру математика, Кеплер преисполнился решимости исполнить свой христианский долг так, как он его себе представлял: постигнуть творение Господне, устройство Вселенной. Поэтому он проштудировал переводы «Начал» и труды александрийских геометров Аполлония и Паппа. Опираясь на основной принцип коперниковой гелиоцентрической системы, Кеплер решил найти ответы на два главных вопроса: почему планет именно шесть и что определяет именно такие расстояния между планетарными орбитами. Вопросы «почему» и «что» в астрономии были в новинку. В отличие от своих предшественников, которым было довольно всего-навсего отмечать наблюдаемые положения планет, Кеплер стремился вывести теорию, которая бы все объясняла. Свой новый подход, выход на новый уровень любознательности Кеплер объяснял очень красиво:
При любых умственных изысканиях бывает так, что начинаем мы с того, что поражает чувства, а затем благодаря своему устройству разум возносится к вышнему, к тому, чего не постигнуть, сколь бы остры ни были наши чувства. То же самое бывает и в астрономических занятиях, когда мы прежде всего воспринимаем глазами различные положения планет в разное время, а затем в дело вступает логика и на основании этих наблюдений ведет разум к постижению устройства Вселенной.
Однако Кеплер задавался еще одним вопросом: при помощи какого орудия Господь проектировал Свою Вселенную? Первые мысли, которые впоследствии сложились в совершенно фантастические ответы на космические вопросы, посетили Кеплера 19 июля 1595 года, когда он пытался объяснить конъюнкцию внешних планет – Юпитера и Сатурна (положение, при котором у двух небесных тел одни и те же небесные координаты). В общих чертах Кеплер понял вот что: если вписать равносторонний треугольник в окружность (так, чтобы его вершины лежали на окружности), а потом вписать другую окружность в этот треугольник (так, чтобы она касалась середин сторон, см. рис. 58), соотношение радиуса большей окружности к радиусу меньшей будет примерно таким же, как соотношение размеров орбиты Сатурна к размерам орбиты Юпитера. Продолжая рассуждать в том же духе, Кеплер решил, что, дабы получить орбиту Марса (следующей планеты, ближе к Солнцу), нужно вписать в маленький круг следующую геометрическую фигуру, то есть квадрат. Однако при этом нужного размера не получилось. Кеплер не сдался, а поскольку он уже ступил на путь платоновского образа мысли – был убежден, что «Господь геометризирует», – то, естественно, сделал следующий геометрический шаг и обратился к трехмерным телам. В результате этого умственного упражнения Кеплер впервые прибегнул к геометрическим телам, связанным с золотым сечением.
Ответ на первые два вопроса, которые занимали Кеплера, дан в первом его трактате под названием «
Ответ на вопрос, почему планет именно шесть, дался Кеплеру очень просто: потому что правильных платоновых тел ровно пять. Если считать, что они задают промежутки между планетами, получается шесть промежутков, считая внешнюю сферическую границу – небеса с фиксированными звездами. Более того, модель Кеплера призвана дать ответ и на вопрос о размерах орбит. Вот как пишет сам ученый: