Леонардо Фибоначчи родился в 1170 году в семье дельца и правительственного чиновника по имени Гильельмо. Прозвище Фибоначчи (от латинского «filius Bonacci», «сын семьи Боначчи» или «сын доброй матери-природы»), вероятнее всего, придумал историк математики Гийом Либри в примечании к своей книге «История математических наук в Италии», вышедшей в 1838 году (Guillaume Libri. Histoire des Sciences Mathematique en Italie), хотя некоторые исследователи считают, что впервые это слово встречается у итальянских математиков конца XVIII века. В некоторых рукописях и документах Леонардо называет себя либо Леонардо Биголло (или Леонарди Биголли Пизани), где слово «Bigollo» означает что-то вроде «путешественник» или «важное лицо» – на тосканском и венецианском диалектах соответственно. Пиза XII века была оживленным морским портом, через который шла торговля и с материка, и из заморских стран. Дальневосточные специи проходили через Пизу на своем пути в Северную Европу, и их пути пересекались в порту с путями вина, соли и масла, перевозившихся в разные области Италии, Сицилии и Сардинии. В Пизе процветала кожевенная промышленность, козлиные шкуры для которой ввозили из Северной Африки, и по берегам реки Арно, на которой стоит город, часто можно было встретить дубильщиков, обрабатывавших кожи. Также город славился кузнецами и корабелами. Сегодня главная достопримечательность Пизы – покосившаяся башня, строительство которой началось в годы юности Фибоначчи. Очевидно, для всей этой бурной коммерческой деятельности нужна была обширная документация и учет запасов и цен. Несомненно, у Леонардо были возможности наблюдать разнообразных писцов за работой – он видел, как они составляли прейскуранты римскими цифрами и складывали числа на счетах-абаке. Арифметические действия с римскими цифрами – это вам не шутки. Например, чтобы получить сумму 3786 и 3843, нужно сложить MMMDCCLXXXVI и MMMDCCCXLIII. Ну как, громоздко? Это вы еще не пробовали умножать эти числа. Однако пока средневековым дельцам не приходилось выходить за пределы простого сложения и вычитания, им на худой конец годились и римские цифры. Римским цифрам, само собой, недоставало одной фундаментальной составляющей – позиционной системы, такой, в которой число, записанное как 547, на самом деле означает (5 × 102) + (4 × 101) + (7 × 100). Отсутствие позиционного принципа записи в Западной Европе преодолевали при помощи счетов-абака. Вероятно, слово «абак» произошло от древнееврейского слова «avaq» – «пыль», поскольку первые вычисления, по всей видимости, производились на доске, посыпанной песком, на которой палочкой выводили цифры. Во времена Фибоначчи это уже были более или менее привычные для нас бухгалтерские счеты с бусинами, которые ездили по проволокам. Разные виды счетов играли роль позиционной системы. У типичных счетов было четыре проволоки, бусины на нижней играли роль единиц, на второй снизу – десятков, на третьей – сотен и на четвертой – тысяч. Так что хотя при простых арифметических операциях счеты очень помогали (я был потрясен, когда во время поездки в Москву в 1990 году обнаружил, что на кассе в гостиничном кафе считают на счетах!), для более сложных вычислений они, конечно, совсем не годились. О том, чтобы подсчитать на счетах «миллиарды и миллиарды», о которых пишет популяризатор астрономии Карл Саган, не может быть и речи.
В городе Беджаи в Алжире Фибоначчи познакомился с искусством записи при помощи девяти индийских цифр – вероятно, как он сам выразился, под «блестящим руководством» наставника-араба. Затем Фибоначчи объехал все Средиземноморье, где еще сильнее расширил свой математический кругозор, после чего и решил опубликовать книгу, при помощи которой надеялся шире внедрить индо-арабские цифры в коммерческий обиход. В этой книге Фибоначчи скрупулезно объясняет, как переводить римские числа в новую систему и как производить арифметические операции с новыми цифрами. Он приводит многочисленные примеры, где демонстрируется применение «новой математики» для решения самых разных задач – от коммерческих сделок и заполнения и опорожнения резервуаров до движения судов. В начале книги Фибоначчи счел нужным извиниться перед читателем: «Если я случайно упустил что-то более или менее нужное или относящееся к делу, прошу простить меня, поскольку у всех есть недостатки и невозможно все предусмотреть».
Во многих случаях Фибоначчи давал не одно решение задачи, а несколько и проявлял невероятную гибкость и находчивость при выборе нескольких методов решения. Кроме всего прочего, его алгебра во многом риторична: он объясняет решение словами, а не решает уравнения, как сделали бы мы в наши дни. Приведу прелестный пример одной из задач из «Liber abaci» – «Книги счетов» (в том виде, в каком она приведена в чудесной книге Джозефа и Фрэнсис Гиз «Леонардо из Пизы и новая математика Средневековья» – Joseph and Frances Gies. Leonard of Pisa and the New Mathematics of the Middle Ages):