Читаем φ – Число Бога полностью

Прекрасный пример такой ситуации – линия, которую можно считать очертаниями берегов некоей воображаемой страны. Снежинка Коха – кривая, которую первым описал в 1904 году шведский математик Нильс Хельге фон Кох (1870–1924) (рис. 113). Начертим равносторонний треугольник со стороной в один дюйм. Теперь в середине каждой стороны достроим треугольники поменьше – со стороной в одну треть дюйма. В результате на этом этапе у нас получится звезда Давида. Обратите внимание, что периметр первоначального треугольника составлял три дюйма, а теперь он состоит из двенадцати сегментов по трети дюйма каждый, так что общая его длина равняется уже четырем дюймам. Теперь будем последовательно повторять эту процедуру – на каждой стороне треугольника будем достраивать новый с длиной стороны в одну треть предыдущей. Каждый раз длина периметра будет возрастать с коэффициентом 4/3, и так до бесконечности, несмотря на то что линия ограничивает замкнутое пространство конечной площади (можно доказать, что площадь стремится к 8/5 площади первоначального треугольника).

Открытие фракталов заставило задуматься, сколько же у них измерений. Фрактальное измерение – это мера «сморщенности» фрактала, то есть того, насколько быстро увеличиваются длина, площадь или объем, если измерять их на непрерывно уменьшающемся масштабе. Например, интуитивно мы чувствуем, что кривая Коха (рис. 113, внизу) занимает больше пространства, чем одномерная линия, но меньше, чем двухмерный квадрат. Но разве так бывает, чтобы у чего-то было дробное измерение? Ведь между 1 и 2 нет никаких целых чисел. Поэтому Мандельброт принял концепцию, выдвинутую в 1919 году немецким математиком Феликсом Хаусдорфом (1868–1942) – концепцию дробных измерений, которая на первый взгляд не укладывается в голове. Хотя поначалу подобная идея вызывает некоторую оторопь, оказалось, что именно дробные измерения – прекрасный инструмент, позволяющий охарактеризовать степень неправильности, или фрактальной размерности, предметов. Чтобы получить умопостижимое определение фрактального измерения или измерения самоподобия, удобно воспользоваться в качестве точек отсчета знакомыми целочисленными измерениями – 0, 1, 2 и 3. Идея в том, чтобы разобраться, сколько мелких объектов составляют крупный при любом количестве измерений. Например, если разделить одномерный отрезок пополам, то получим два сегмента (коэффициент сокращения = 1/2). Если разделить двумерный квадрат на «подквадраты» с половинной длиной стороны (коэффициент сокращения опять же = 1/2), то получим 4 = 22 квадрата. Если же мы возьмем длину стороны в 1/3 первоначальной (f = 1/3), квадратов станет 9 = 32. Если же мы поступим также с трехмерным кубом, то деление ребра пополам (f = 1/2) даст нам 8 = 23 кубиков, а ребро в 1/3 первоначального – 27 = 33 кубиков (рис. 114). Если изучить все эти примеры, обнаружим, что между количеством «субобъектов» n, коэффициентом сокращения длины f и измерением D есть определенная взаимосвязь. И вот какая: = (1/f) D. (Другую форму записи этого соотношения я привожу в Приложении 7.) Если применить эту формулу к снежинке Коха, получится фрактальное измерение, равное примерно 1,2619.

Рис. 114

Кстати, и побережье Британии обладает фрактальным измерением, равным примерно 1,26. Поэтому фракталы служат моделями реальных береговых линий. Первопроходец теории хаоса Митчелл Фейгенбаум из Рокфеллеровского университета в Нью-Йорке опирался на этот факт, когда участвовал в издании атласа издательства «Хаммонд» в 1992 году («Hammond Atlas of the World), построенного по революционно новому принципу. Предоставив основную часть работы компьютерам и по возможности не вмешиваясь в нее, Фейгенбаум изучил спутниковые данные о фрактальной струкутре побережий, чтобы определить, какие точки на береговых линиях играют самую важную роль. Результатом стала, в частности, новая карта Южной Америки, точная на 98 % по сравнению с привычными 95 % из старых атласов.

Главное свойство многих естественных фракталов, от деревьев до кристаллов, – ветвистость. Изучим сильно упрощенную модель этого вездесущего явления. Начнем с ветки единичной длины, которая разделяется на две ветки длиной 1/2, расходящиеся под углом в 120 градусов (рис. 115). Затем каждая ветка разделяется подобным же образом, и процесс продолжается бесконечно.

Рис. 115

Перейти на страницу:

Все книги серии Золотой фонд науки

φ – Число Бога
φ – Число Бога

Как только не называли это загадочное число, которое математики обозначают буквой φ: и золотым сечением, и числом Бога, и божественной пропорцией. Оно играет важнейшую роль и в геометрии живой природы, и в творениях человека, его закладывают в основу произведений живописи, скульптуры и архитектуры, мало того – ему посвящают приключенческие романы! Но заслужена ли подобная слава? Что здесь правда, а что не совсем, какова история Золотого сечения в науке и культуре, и чем вызван такой интерес к простому геометрическому соотношению, решил выяснить известный американский астрофизик и популяризатор науки Марио Ливио. Увлекательное расследование привело к неожиданным результатам…Увлекательный сюжет и нетривиальная развязка, убедительная логика и независимость суждений, малоизвестные факты из истории науки и неожиданные сопоставления – вот что делает эту научно-популярную книгу настоящим детективом и несомненным бестселлером.

Марио Ливио

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Вселенная! Курс выживания
Вселенная! Курс выживания

Эта книга – идеальный путеводитель по самым важным и, конечно, самым увлекательным вопросам современной физики: «Возможны ли путешествия во времени?», «Существуют ли параллельные вселенные?», «Если вселенная расширяется, то куда она расширяется?», «Что будет, если, разогнавшись до скорости света, посмотреть на себя в зеркало?», «Зачем нужны коллайдеры частиц, и почему они должны работать постоянно? Разве в них не повторяют без конца одни и те же эксперименты?» Юмор, парадоксальность, увлекательность и доступность изложения ставят эту книгу на одну полку с бестселлерами Я. Перельмана, С. Хокинга, Б. Брайсона и Б. Грина.Настоящий подарок для всех, кого интересует современная наука, – от любознательного старшеклассника до его любимого учителя, от студента-филолога до доктора физико-математических наук.

Джефф Бломквист , Дэйв Голдберг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
От Дарвина до Эйнштейна
От Дарвина до Эйнштейна

Эта книга – блестящее подтверждение вечной истины «не ошибается только тот, кто ничего не делает»! Человеку свойственно ошибаться, а великие умы совершают подлинно великие ошибки. Американский астрофизик Марио Ливио решил исследовать заблуждения самых блистательных ученых в истории человечества и разобраться не только в сути этих ляпсусов, но и в том, какие психологические причины за ними стоят, а главное – в том, как они повлияли на дальнейший прогресс человечества. Дарвин, Кельвин, Эйнштейн, Полинг, Хойл – эти имена знакомы нам со школьной скамьи, однако мы и не подозревали, в какие тупики заводили этих гениев ошибочные предположения, спешка или упрямство и какие неожиданные выходы из этих тупиков находила сама жизнь… Читателя ждет увлекательный экскурс в историю и эволюцию науки, который не только расширит кругозор, но и поможет понять, что способность ошибаться – великий дар. Дар, без которого человек не может быть человеком.

Марио Ливио

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература

Похожие книги

12 недель в году
12 недель в году

Многие из нас четко знают, чего хотят. Это отражается в наших планах – как личных, так и планах компаний. Проблема чаще всего заключается не в планировании, а в исполнении запланированного. Для уменьшения разрыва между тем, что мы хотели бы делать, и тем, что мы делаем, авторы предлагают свою концепцию «года, состоящего из 12 недель».Люди и компании мыслят в рамках календарного года. Новый год – важная психологическая отметка, от которой мы привыкли отталкиваться, ставя себе новые цели. Но 12 месяцев – не самый эффективный горизонт планирования: нам кажется, что впереди много времени, и в результате мы откладываем действия на потом. Сохранить мотивацию и действовать решительнее можно, мысля в рамках 12-недельного цикла планирования. Эта система проверена спортсменами мирового уровня и многими компаниями. Она поможет тем, кто хочет быть эффективным во всем, что делает.На русском языке публикуется впервые.

Брайан Моран , Майкл Леннингтон

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
1991. Хроника войны в Персидском заливе
1991. Хроника войны в Персидском заливе

Книга американского военного историка Ричарда С. Лаури посвящена операции «Буря в пустыне», которую международная военная коалиция блестяще провела против войск Саддама Хусейна в январе – феврале 1991 г. Этот конфликт стал первой большой войной современности, а ее планирование и проведение по сей день является своего рода эталоном масштабных боевых действий эпохи профессиональных западных армий и новейших военных технологий. Опираясь на многочисленные источники, включая рассказы участников событий, автор подробно и вместе с тем живо описывает боевые действия сторон, причем особое внимание он уделяет наземной фазе войны – наступлению коалиционных войск, приведшему к изгнанию иракских оккупантов из Кувейта и поражению армии Саддама Хусейна.Работа Лаури будет интересна не только специалистам, профессионально изучающим историю «Первой войны в Заливе», но и всем любителям, интересующимся вооруженными конфликтами нашего времени.

Ричард С. Лаури

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Прочая справочная литература / Военная документалистика / Прочая документальная литература
100 способов уложить ребенка спать
100 способов уложить ребенка спать

Благодаря этой книге французские мамы и папы блестяще справляются с проблемой, которая волнует родителей во всем мире, – как без труда уложить ребенка 0–4 лет спать. В книге содержатся 100 простых и действенных советов, как раз и навсегда забыть о вечерних капризах, нежелании засыпать, ночных побудках, неспокойном сне, детских кошмарах и многом другом. Всемирно известный психолог, одна из основоположников французской системы воспитания Анн Бакюс считает, что проблемы гораздо проще предотвратить, чем сражаться с ними потом. Достаточно лишь с младенчества прививать малышу нужные привычки и внимательно относиться к тому, как по мере роста меняется характер его сна.

Анн Бакюс

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Детская психология / Образование и наука