Известно, что де Мере предлагал Блезу другие вопросы — связанные с «умом математическим» и менее «высоким» знанием. Кавалер, как и его друг Миттон, был большим любителем азартных игр и знакомил Паскаля с проблемами, возникавшими в различных игровых ситуациях. А между тем большинство задач, оказавших существенное влияние на зарождение и первоначальное развитие теории вероятностей, связано преимущественно с азартными играми, которые давали удобные схемы для описания вероятностных явлений. Самыми распространенными азартными играми в то время были игры в кости в виде кубов с точками (от одной до шести) на каждой грани. Подсчетом количества благоприятных шансов и неблагоприятных исходов при бросании нескольких игральных костей занимались в XVI веке известные итальянские математики Кардано, Тарталья и некоторые другие ученые. Однако их вычисления не были построены на точных умозаключениях. Более полный и строгий анализ этой задачи сделал Галилей в «Рассуждении об игре в кости», в котором, в частности, решал задачу, почему при бросании трех костей в длинной серии проб цифра 11 выпала 108 раз, а цифра 12 — только 100 (по условию выигрывает тот, у кого общее количество очков превышает десять). Галилей показал, что те шесть способов, которые дают и одиннадцать и двенадцать очков, на самом деле неравноценны, так как, например, сочетание с тремя одинаковыми очками (4+4+4) встречается гораздо реже сочетания с двумя одинаковыми очками (5 + 5 + 2) и т. п. На основе более строгого учета сочетаний Галилей определил 27 вариантов выпадения цифры 11 и 25 — цифры 12, что пропорционально результатам серии. Время создания «Рассуждения...» не установлено, а опубликовано оно было лишь в XVIII веке, поэтому считается, что работа Галилея никак не повлияла на основателей теории вероятностей Паскаля и Ферма. «Наука о вероятности родилась, — пишет известный математик Пойа, — когда Паскаль и Ферма начали изучать азартные игры».
Во времена Людовика XIII азартные игры стали подлинной общественной страстью, которая заставляла скучающих аристократов и богатеющих буржуа проигрывать целые состояния. Появлялись даже подпольные игорные дома, эти «новые публичные академии, где в подражание знати говорят лишь об игре на пистоли» и где, «кроме разорения множества семейств, совершаются бесконечные злодеяния». Несмотря на королевские указы и большие штрафы (около десяти тысяч ливров), подобные дома продолжали процветать.
В этих домах и аристократических особняках возникали одинаковые затруднения, вызывавшие бурные споры. Среди них встречались и две задачи, предложенные Блезу кавалером де Мере.
Первая задача довольно проста, и ее решили одновременно Паскаль, Ферма, Роберваль и сам де Мере. Она заключалась в следующем: сколько раз надо бросать две игральные кости, чтобы шансы «прозвонить» («Звоните, дьявол умер!» — вскрикивали игроки при выигрыше), то есть в данном случае выбросить сразу две шестерки, превысили вероятность обратного результата. Различные сочетания шести граней двух костей дают в общей сложности 36 цифровых комбинаций, но только одна из них может дать двойную шестерку. Следовательно, при единократном бросании имеется один шанс «умертвить дьявола» против 35. При увеличении числа бросков в два раза соответственно увеличивается количество возможных комбинаций (362) и неблагоприятных результатов (352). Вычитая число неблагоприятных исходов из числа всех возможных комбинаций, получаем число благоприятных результатов (36n—35n). И количество бросков должно увеличиваться до тех пор, пока эта разница не превысит числа неблагоприятных результатов, что обнаруживается начиная с n = 25. Таков был результат, найденный одновременно несколькими исследователями.
Другая задача, предложенная де Мере Паскалю, гораздо сложнее. Необходимо найти справедливое распределение ставок между игроками, если игра, состоящая из ряда партий, прервана. Еще в конце XV века ее рассматривал итальянский математик Лука Пачоли, считавший, что ставки должны быть разделены пропорционально числам партий, выигранных каждым к моменту прекращения игры. Кардано справедливо возражал, что в таком случае не учитываются шансы, связанные с общим количеством партий, которые по предварительному условию необходимо было выиграть, но верного решения не дал. Блез познакомил с этой задачей Ферма и Роберваля. Последний, по словам Лейбница, не мог или не хотел понимать вероятностную проблематику и не справился с задачей, а Паскаль и Ферма нашли верный результат в своей переписке, составившей еще одну любопытную эпистолярную главу математики. 29 июля 1654 года Блез отвечает на письмо тулузца с изложением метода Ферма, переданное через Каркави (оно утеряно).