Читаем Паскаль полностью

Благодаря своего корреспондента и высоко отзываясь о его методе, Блез предлагает собственный. Сначала он приводит конкретный пример, когда два игрока ставят по 32 пистоли на следующих условиях: кто первым выиграет три партии, берет обе ставки. Если предположить, что первый игрок уже выиграл две партии, а второй — одну и что играется четвертая партия, то в таком случае возможны следующие варианты: выигрыш первого игрока приносит ему 64 пистоли, а второму — ничего; выигрыш второго дает каждому по 32 пистоли (при прекращении игры). Но если они решили не проводить четвертую партию, то как разделить ставки? Первый игрок, пишет Блез, учитывая возможные результаты четвертой партии, должен сказать: «32 пистоли мне обеспечены, ибо даже в случае проигрыша я их получил бы, но остальные 32 с равными шансами могу иметь и я, и вы; таким образом, разделите их пополам и дайте мне, кроме того, еще верные 32 пистоли». Следовательно, первому игроку достанется 3/4ставки (48 пистолей), а второму — 1/4(16 пистолей). (Сравним с рассуждением Пачоли, согласно которому первый получил бы 2/3 ставки, а второй — 1/3.)

Затем Блез разбирает другой вариант раздела ставок, когда первый игрок уже выиграл две партии, а второй не выиграл ни одной. Если бы игралась третья партия, то были бы возможны два исхода: выигрыш первого игрока давал бы ему все 64 пистоли, а выигрыш второго приводил бы раздел ставок к предшествующему случаю (первому — 48, а второму — 16 пистолей). Если же решено прервать игру перед третьей партией, то первый игрок должен сказать: «При выигрыше третьей партии мне достанутся все 64 пистоли, при проигрыше ее мне законно принадлежат 48 пистолей; следовательно, дайте мне эти 48 пистолей, а остальные 16 разделим пополам, ибо у нас равные шансы выиграть их». Таким образом, первому игроку достанется 7/8 ставки (56 пистолей), а второму — 1/8 (8 пистолей).

Наконец, Блез переходит к третьему варианту разделения ставок, когда первый игрок выиграл одну партию, а второй не выиграл ни одной. Розыгрыш следующей партии мог бы дать два результата: победа первого игрока давала бы ему, как в предыдущем случае, 56 пистолей, а победа второго приводила бы к равному распределению ставки (каждому по 32 пистоли). Если же вторая партия не разыгрывается, то первый игрок должен сказать: «Дайте мне 32 уже обеспеченные пистоли, а оставшиеся от 56, то есть 24, разделим пополам. Следовательно, мне принадлежат 32 + 12 = 44 пистоли». Таким образом, первому игроку достанется 11/16 ставки, а второму — 8/16 (20 пистолей).

Паскаль делит ставку пропорционально вероятности выигрыша при различных вариантах продолжения игры и фактически пользуется теоремами сложения и умножения вероятностей, а также понятием математического ожидания. Его метод, пишет Эмиль Пикар, удивительно прост: «Составляя уравнение с конечными остатками, он изобретает один из двух аналитических методов подсчета вероятностей. Другой метод, основанный на комбинаторной теории, был дан одновременно Ферма. Такая любопытная переписка между двумя великими умами делает нас свидетелями зарождения первых принципов исчисления вероятностей».

Комбинаторный метод Ферма, который в письме к Каркави от 9 августа 1654 года выражал бесконечное восхищение талантом молодого Паскаля и считал его способным довести до успешного конца любые начинания, известен из послания Блеза знаменитому тулузцу, датированного 24 августа 1654 года. В нем, в частности, приводится пример решения Ферма третьего варианта Паскалева разделения ставки, когда первый игрок выиграл одну партию, а второй не выиграл ни одной. Тулузец исходит из вероятности выигрыша всей игры: для ее окончания максимально потребовалось бы еще четыре партии, и он рассматривает возможные комбинации (их всего шестнадцать) результатов этих четырех партий, которые можно записать следующим образом (выигранные первым игроком партии обозначаются знаком +, выигранные вторым — знаком —):

Только в пяти последних исходах победителем оказывается второй игрок, одиннадцать же первых благоприятны для выигрыша его соперника. Следовательно, первый игрок должен получить 11/16 ставки, а второй — 5/16.

Полученный разными методами одинаковый результат заставляет Блеза в письме к Ферма высказать свое удо-

вольствие по поводу того, что «истина одна и та же и в Париже и в Тулузе». Хотя в процессе переписки выявились некоторые расхождения, они быстро устранились, и 27 октября 1654 года Паскаль отвечает своему корреспонденту: «Ваше последнее письмо меня полностью удовлетворило. Я восхищаюсь вашим методом раздела ставки, тем более что вполне его понимаю; оп целиком ваш, не имеет ничего общего с моим и легко приводит к той же цели. Итак, наше взаимопонимание восстановлено».

Перейти на страницу:

Похожие книги

Адмирал Советского Союза
Адмирал Советского Союза

Николай Герасимович Кузнецов – адмирал Флота Советского Союза, один из тех, кому мы обязаны победой в Великой Отечественной войне. В 1939 г., по личному указанию Сталина, 34-летний Кузнецов был назначен народным комиссаром ВМФ СССР. Во время войны он входил в Ставку Верховного Главнокомандования, оперативно и энергично руководил флотом. За свои выдающиеся заслуги Н.Г. Кузнецов получил высшее воинское звание на флоте и стал Героем Советского Союза.В своей книге Н.Г. Кузнецов рассказывает о своем боевом пути начиная от Гражданской войны в Испании до окончательного разгрома гитлеровской Германии и поражения милитаристской Японии. Оборона Ханко, Либавы, Таллина, Одессы, Севастополя, Москвы, Ленинграда, Сталинграда, крупнейшие операции флотов на Севере, Балтике и Черном море – все это есть в книге легендарного советского адмирала. Кроме того, он вспоминает о своих встречах с высшими государственными, партийными и военными руководителями СССР, рассказывает о методах и стиле работы И.В. Сталина, Г.К. Жукова и многих других известных деятелей своего времени.Воспоминания впервые выходят в полном виде, ранее они никогда не издавались под одной обложкой.

Николай Герасимович Кузнецов

Биографии и Мемуары
100 великих гениев
100 великих гениев

Существует много определений гениальности. Например, Ньютон полагал, что гениальность – это терпение мысли, сосредоточенной в известном направлении. Гёте считал, что отличительная черта гениальности – умение духа распознать, что ему на пользу. Кант говорил, что гениальность – это талант изобретения того, чему нельзя научиться. То есть гению дано открыть нечто неведомое. Автор книги Р.К. Баландин попытался дать свое определение гениальности и составить свой рассказ о наиболее прославленных гениях человечества.Принцип классификации в книге простой – персоналии располагаются по роду занятий (особо выделены универсальные гении). Автор рассматривает достижения великих созидателей, прежде всего, в сфере религии, философии, искусства, литературы и науки, то есть в тех областях духа, где наиболее полно проявились их творческие способности. Раздел «Неведомый гений» призван показать, как много замечательных творцов остаются безымянными и как мало нам известно о них.

Рудольф Константинович Баландин

Биографии и Мемуары
100 великих интриг
100 великих интриг

Нередко политические интриги становятся главными двигателями истории. Заговоры, покушения, провокации, аресты, казни, бунты и военные перевороты – все эти события могут составлять только часть одной, хитро спланированной, интриги, начинавшейся с короткой записки, вовремя произнесенной фразы или многозначительного молчания во время важной беседы царствующих особ и закончившейся грандиозным сломом целой эпохи.Суд над Сократом, заговор Катилины, Цезарь и Клеопатра, интриги Мессалины, мрачная слава Старца Горы, заговор Пацци, Варфоломеевская ночь, убийство Валленштейна, таинственная смерть Людвига Баварского, загадки Нюрнбергского процесса… Об этом и многом другом рассказывает очередная книга серии.

Виктор Николаевич Еремин

Биографии и Мемуары / История / Энциклопедии / Образование и наука / Словари и Энциклопедии