— В клетках-эукариотах совсем другие рибосомы, и клиндамицин на них не действует. Это хорошо, потому что иначе он убивал бы и человека. Именно это делает его хорошим лекарством. Но ведь
Тем не менее клиндамицин убивает и токсоплазму, и плазмодии. Раньше никто не знал, как и почему он это делает. Ученые знали, что препарат не действует на настоящие рибосомы паразита. В митохондриях эукариот имеются также несколько дополнительных рибосом, которые отличаются от остальных. Вообще, митохондрии обладают собственной ДНК, которую, помимо прочего, используют для строительства собственных рибосом. Но ученые обнаружили, что клиндамицин не разрушает и митохондриальные рибосомы.
Роос вспомнил, что у токсоплазмы есть и третий набор ДНК. В 1970-х гг. ученые обнаружили кольцо генов, не принадлежащих ни ядру, ни митохондриям. В этой ДНК-сиротке содержалась инструкция для построения третьего типа рибосомы. Может быть, подумал Роос, клиндамицин убивает паразита благодаря воздействию на эту третью рибосому? Вместе со своими студентами он разрушил кольцо ДНК и обнаружил, что токсоплазма и, правда, не может без него жить.
Но что представляет собой это кольцо генов? Роос со своей командой выяснил, что располагается оно внутри особого образования, плавающего рядом с ядром паразита. В прошлом ученые придумали для этой структуры множество названий — сферическое тело, аппарат Гольджи, мультимембранное тело. Увидев любое из этих названий, можно подумать, что ученые знают, для чего эта структура предназначена. На самом деле никто этого не знал.
Роос же теперь выяснил, что в этой структуре размещаются гены, которые делают токсоплазму уязвимой перед клиндамицином. Но он по-прежнему не знал, для чего нужна рибосома, которая формируется по этим генам. Пытаясь разобраться в этом, он сравнил гены кольца с другими генами токсоплазмы и других микробов. Похожие отыскались не в ядре или митохондрии
— При виде этой ДНК можно подумать, что перед тобой зеленое растение, — говорит Роос.
Вообще, он надеялся выяснить, почему
Для биологов XIX в., таких как Ланкестер, паразиты были примером дегенерации. Их эволюция представляла собой историю потерь, историю отказа от всех адаптационных механизмов, которые делают возможной энергичную свободную жизнь, которую паразиты променяли на бесплатную кормежку. Эти представления оказались очень живучими. Много лет эволюционные биологи не обращали внимания на паразитов, считая, что история их эволюции не заслуживает внимания по сравнению с такими сагами, как истоки полета или формирование мозга. Но ведь
Именно так обстояло дело с Дэвидом Роосом: оказалось, что единственный способ понять, что такое токсоплазма сегодня и почему малярия — это зеленая болезнь, — погрузиться в прошлое на сотни миллионов лет. Истории развития подобных организмов не менее увлекательны, чем истории свободноживущих существ. Они неразрывно связаны с эволюцией остальной жизни, уходящей в прошлое на 4 миллиарда лет. Более того, история паразитов — это в значительной степени история самой жизни.
Реконструировать их историю нелегко. Как правило, паразиты бывают мягкими или, наоборот, хрупкими, а эти два состояния не слишком способствуют сохранению останков на века, а тем более на миллионы лет. Конечно, время от времени — раз в несколько миллионов лет — оса-паразит завязнет в капле смолы и замрет навсегда в куске янтаря или самец краба, феминизированный рачком-паразитом, оставит нам свои окаменелые останки, но по большей части паразиты бесследно исчезают вместе с плотью своих хозяев. Камни — не единственный источник сведений об истории жизни. Эволюция создала раскидистое древо, и биологи сегодня могут изучать его покрытые листьями верхушки. Сравнивая их биологические черты, ученые могут вернуться по веткам до самых корней.