Такая стратегия — «заманить и подменить» — работает только потому, что у паразита имеется запас готовых генов, каждый из которых может отвечать за строительство молекул поверхностного слоя. Но эти гены невозможно извлекать из «загона» в произвольном порядке. Представьте, что произошло бы, если бы трипаносомы, попав в тело человека, успели использовать все имеющиеся в запасе гены и «походить» в каждой из оболочек. Иммунная система заготовила бы антитела к каждой из них и в конце концов покончила с инфекцией. А если бы трипаносома попыталась прибегнуть к старому трюку и вновь сменила оболочку, то оказалось бы, что этот ген уже использовался и у иммунной системы уже имеется шаблон для выпуска соответствующих антител. На самом же деле все обстоит не так. Трипаносомы перебирают свой запас генов в строго определенном порядке, по очереди. Возьмите две идентичные трипаносомы и заразите ими двух мышей, и их потомки будут менять гены и оболочки в одинаковом порядке. Таким образом паразит может растянуть свое существование в организме хозяина на многие месяцы.
Сегодня Рональда Росса помнят больше по работам о малярии, а не о сонной болезни. Тем не менее ему почти ничего не удалось узнать о том, как
Тем временем паразиты заселяются в эритроциты и обустраивают свой новый дом. Плазмодию приходится приложить массу усилий, чтобы компенсировать отсутствие у клеток крови генов и протеинов, но у пустоты есть и положительные моменты: в красных кровяных клетках очень удобно прятаться. Поскольку в них нет генов, они не умеют строить и молекулы МНС, а значит, никак не могут сообщить иммунной системе о том, что появилось у них внутри. Некоторое время плазмодий, проживая внутри эритроцита и пользуясь его идеальной маскировкой, может наслаждаться полной безопасностью.
Но паразит активно делится, быстро заполняет клетку и в какой-то момент начинает укреплять стенки эритроцита собственными протеинами. Чтобы не погибнуть вместе с эритроцитом в селезенке, он строит на поверхности клетки специальные выросты и снабжает их крохотными защелками, способными зацепиться за стенку кровеносного сосуда и накрепко приковать к ней клетку-дом. Эти защелки представляют собой отдельную опасность: они рискуют привлечь к себе внимание иммунной системы. Против них могут быть изготовлены антитела, и тогда соберется целая армия Т-киллеров, которые смогут легко узнавать по этим признакам инфицированные клетки.
Поскольку иммунная система способна опознавать эти защелки, ученые потратили немало времени на их изучение в надежде разработать вакцину против малярии. В 1990-х гг. они впервые смогли установить последовательность генов, отвечающих за создание защелок. Выяснилось, что для их строительства достаточно лишь одного гена, но в структуре ДНК плазмодия таких генов больше сотни. Получается, что защелки бывают самой разной формы, но каждая из них способна прочно прикрепить эритроцит к стенке кровеносного сосуда.