В струне заключены некоторые величайшие симметрии, известные науке. Обсуждая инфляционное расширение Вселенной и Стандартную модель в главе 4, мы видели, что симметрия предоставляет нам прекрасный способ организации субатомных частиц в приятные и изящные модели. Три типа кварков могут быть организованы согласно симметрии SU (3), которая позволяет кваркам меняться между собой местами. В теории великого объединения считается, что пять типов кварков и лептонов могли бы быть организованы согласно симметрии SU (5).
Из струнной теории благодаря этим симметриям уходят оставшиеся противоречия и аномалии. Поскольку симметрии представляют собой одно из наиболее прекрасных и мощных средств, имеющихся в нашем распоряжении, то вполне можно было бы ожидать, что теория Вселенной должна обладать наиболее изящной и мощной симметрией, какая только известна науке. Логичной была бы симметрия, которая позволила бы менять местами не только кварки, но и все частицы, которые можно встретить в природе. Это значит, что все уравнения должны оставаться неизменными, если мы изменим положение всех частиц относительно друг друга. Такой подход в точности описывает симметрия суперструны, называемая суперсимметрией{131}.
Если рассматривать все взаимодействия и частицы Вселенной, то мы увидим, что в зависимости от спина все они делятся на две категории – фермионы и бозоны. Они ведут себя как волчки, которые могут вращаться с различными скоростями. К примеру, спин фотона, частицы, являющейся носителем электромагнитного взаимодействия, равен единице. Гравитон, частица гравитации, имеет спин, равный двум. Все частицы, обладающие спином, выражающимся целым числом, называют бозонами. Подобным образом частицы вещества описываются при помощи субатомных частиц, спин которых выражается полуцелыми значениями – 1/2, 3/2, 5/2 и так далее. (Частицы с полуцелыми значениями спина называют фермионами. К ним относятся электрон, нейтрино и кварки.) Таким образом, суперсимметрия изящно выражает дуализм, возникающий между бозонами и фермионами, между взаимодействиями и веществом.
В теории, основанной на суперсимметрии, у каждой частицы есть напарник: каждый фермион находится в паре с бозоном. Хотя мы никогда не наблюдали этих суперсимметричных партнеров в природе, физики окрестили партнера электрона сэлектроном, который обладает спином, равным нулю. (Физики добавляют «с» для описания суперпартнера какой-либо частицы[28].) Слабые взаимодействия включают частицы, называемые лептонами: их суперпартнеров называют слептонами. Подобным образом и у кварка может быть партнер с нулевым спином, который называется скварком. В целом партнеры всех известных частиц (кварков, лептонов, гравитонов, фотонов и так далее) называются суперпартнерами, или суперчастицами. Эти суперпартнеры нам еще только предстоит обнаружить при помощи ускорителей частиц (возможно, наше оборудование еще недостаточно мощное, чтобы мы могли получить эти частицы).
Но поскольку все субатомные частицы являются либо фермионами, либо бозонами, то в теории суперсимметрии содержится потенциал объединения всех известных субатомных частиц одной простой симметрией.
Представьте себе снежинку. Пусть каждый из шести ее кончиков представляет субатомную частицу, при этом бозоны расположены через один и за каждым бозоном следует фермион. Красота этой суперснежинки состоит в том, что при вращении она остается неизменной. Таким образом, эта суперснежинка объединяет все частицы и их суперпартнеров. Поэтому, если мы попытаемся построить гипотетическую единую теорию поля, в которой есть лишь шесть частиц, то вполне естественно, что лучшим претендентом на эту роль явится суперснежинка.