С приходом М-теории все изменилось. Высшие измерения призывают к революции в физике, поскольку физики вынуждены бороться с величайшей проблемой, стоящей сегодня перед их наукой, – пропастью, разделяющей теорию относительности и квантовую механику. Что замечательно, обе эти теории вобрали в себя все фундаментальные физические знания о Вселенной. В настоящее время только М-теория способна объединить эти две великие, на вид противоречивые теории Вселенной в связное целое; только М-теория способна создать теорию всего. Из всех предложенных в прошедшем веке теорий единственным кандидатом, способным «узреть Божий замысел», как сказал Эйнштейн, является М-теория.
Только в десяти– или одиннадцатимерном гиперпространстве «достаточно места», чтобы объединить все природные взаимодействия в единую изящную теорию. Такая удивительная теория сможет ответить на извечные вопросы: что произошло еще до начала? Можно ли обратить время вспять? Могут ли порталы в другие измерения перенести нас через Вселенную? (Хотя критики совершенно справедливо указывают на то, что проверка этой теории находится за пределами наших экспериментальных возможностей, в настоящее время планируется ряд экспериментов, которые могут изменить эту ситуацию, – о них мы поговорим в главе 9.)
В течение последних пятидесяти лет все попытки создания действительно единого описания Вселенной заканчивались позорным провалом. На концептуальном уровне это понять несложно. Общая теория относительности и квантовая теория диаметрально противоположны друг другу практически во всех отношениях. Общая теория относительности – это теория очень большого: черных дыр, Больших взрывов, квазаров и расширяющейся Вселенной. Она основана на математике гладких поверхностей, таких как простыни и батуты. Квантовая теория в точности противоположна – она описывает мир всего крошечного: атомов, протонов с нейтронами и кварков. В основе ее лежит теория отдельных пучков энергии, называемых квантами. В отличие от теории относительности, квантовая теория утверждает, что вычислить можно только вероятность событий, так что мы никогда точно не узнаем, где находится электрон. В этих двух теориях все различно – математические подходы, допущения, физические принципы и области применения. Неудивительно, что все попытки объединения их заканчивались провалом.
Физики-гиганты – Эрвин Шрёдингер, Вернер Гейзенберг, Вольфганг Паули и Артур Эддингтон – вслед за Эйнштейном тоже пробовали свои силы в создании единой теории поля, и все они потерпели неудачу. В 1928 году Эйнштейн ненамеренно вызвал массовое волнение в прессе, выдвинув раннюю версию своей единой теории поля.
В 1946 году Шрёдингер тоже заразился этой идеей и создал, как он полагал, эту уже мифическую единую теорию поля. Он спешно совершил довольно необычный для своего (но не для нашего) времени поступок – созвал пресс-конференцию. Даже премьер-министр Ирландии Имон де Валера присутствовал на этой конференции. Когда Шрёдингера спросили, насколько он уверен в том, что ухватил наконец суть единой теории поля, он ответил: «Я считаю, что прав. Я буду выглядеть ужасно глупо, если это не так»{119}. (Об этой пресс-конференции стало известно
В 1958 году физик Джереми Бернштейн посетил лекцию в Колумбийском университете, где Вольфганг Паули представлял свою версию единой теории поля, которую он разработал вместе с Вернером Гейзенбергом. Нильса Бора, также присутствовавшего на этой лекции, она не очень-то впечатлила. В конце концов Бор поднялся и сказал: «Мы на галерке убеждены, что ваша теория безумна. Но что нас разделяет, так это вопрос о том, достаточно ли безумна ваша теория»{120}.
Паули тут же понял, что Бор имел в виду: теория Гейзенберга – Паули была слишком традиционной, слишком заурядной, чтобы стать единой теорией поля. Чтобы «узреть Божий замысел», понадобилось бы привлечение радикально новых математических подходов и идей.