В 1937 году эту опасность заметили физики, когда В. Я. ван Стокум нашел решение уравнений Эйнштейна, которые делали возможным путешествие во времени. Он начал с бесконечно длинного вращающегося цилиндра. Хотя физически невозможно построить объект с бесконечными размерами, он рассчитал, что, если бы такой цилиндр вращался со скоростью, близкой к скорости света, он бы увлекал материю пространства-времени с собой, подобно тому как патока увлекается лопастями миксера. (Этот эффект скручивания также известен как захват системы отсчета и был экспериментально обнаружен на детальных фотографиях вращающихся черных дыр.)
Любого храбреца, отважившегося пройти мимо цилиндра, засосало бы внутрь с фантастической скоростью. При этом стороннему наблюдателю казалось бы, что тот человек превысил скорость света. Хотя сам ван Стокум тогда так и не понял, что, облетев вокруг цилиндра, по сути, можно вернуться назад во времени – в момент, предшествующий моменту отлета. Если вы отбыли в полдень, то к тому времени, как вы вернетесь в точку отсчета, может быть, скажем, 6 часов вечера вчерашнего дня. Чем быстрее вращение цилиндра, тем дальше вы можете унестись назад во времени (при этом единственным ограничением будет то, что вы не смогли бы попасть в момент времени до создания самого цилиндра).
Поскольку сам цилиндр похож на майское дерево[26], то каждый раз, когда вы в танце проносились мимо него, вы бы все дальше и дальше уходили во времени в прошлое. Конечно же, такое решение может быть с легкостью отброшено, поскольку цилиндр все-таки не может быть бесконечно длинным. Кроме того, если бы такой цилиндр все же можно было построить, то центробежная сила, действующая на него, была бы невероятно велика, что стало бы причиной разрушения материала, из которого сделан цилиндр.
Вселенная Гёделя
В 1949 году великий математик и логик Курт Гёдель обнаружил еще более сложное решение уравнений Эйнштейна. Он предположил, что вселенная вращается вся целиком. Подобно случаю с вращающимся цилиндром ван Стокума, все увлекается пространством-временем, тягучим, словно патока.
Во вселенной Гёделя человек, в принципе, может путешествовать между двумя любыми точками пространства или времени. Вы можете стать участником любого события, происшедшего в любой период времени, вне зависимости от того, насколько далеко оно от настоящего. Из-за действия гравитации вселенная Гёделя имеет тенденцию к коллапсу. Поэтому центробежная сила вращения должна сбалансировать гравитационную силу. Иными словами, вселенная должна вращаться с определенной скоростью. Чем больше вселенная, тем больше ее тенденция к коллапсу и тем быстрее она должна вращаться для его предотвращения.
К примеру, вселенная нашего размера по Гёделю должна была бы совершать один полный оборот за 70 млрд лет, а минимальный радиус для путешествия во времени составлял бы 16 млрд световых лет. Однако, путешествуя во времени в прошлое, вы должны двигаться со скоростью чуть ниже скорости света.
Гёделю было прекрасно известно о парадоксах, которые могли возникнуть из такого решения, – возможности встретить самого себя в прошлом и изменить ход истории. «Совершая кругосветное путешествие на ракете по достаточно длинному маршруту, в этих мирах возможно попадать в любой момент прошлого, настоящего и будущего, а потом снова возвращаться обратно, так же как в других мирах возможно путешествовать в отдаленные области пространства, – писал он. – Такое положение дел, кажется, несет в себе элемент абсурда. Ибо оно позволяет человеку отправляться в не очень отдаленное прошлое тех мест, где он сам жил когда-то. Там он обнаружил бы человека, который был бы им самим в более ранний период его жизни. И тогда он смог бы сделать что-нибудь с этим человеком, чего, по его воспоминаниям, с ним самим не происходило»{74}.
Эйнштейн был глубоко обеспокоен решением, найденным его другом и коллегой по Институту перспективных исследований в Принстоне. Его ответ был достаточно прозрачен: