Читаем Озадачник полностью

Для определенности: пусть один билет выигрывает $1, второй $2, третий $3. Мы их так и обозначим: 1, 2, 3. Последовательность вытягивания билетов может быть такой (все возможные варианты, совершенно равновероятные): 123 (А), 132 (Б), 213 (В), 231 (Г), 312 (Д), 321 (Е). Если мы будем действовать по выбранному плану, то в половине случаев (Б, В, Г) мы обеспечим себе максимальный выигрыш ($3), в двух случаях (А и Д) средний выигрыш ($2) и только в одном (Е) – минимальный ($1). 50 % на получение максимального приза – это гораздо лучше, чем средние 33 % (1/3), которые были у нас изначально. Любопытно, что в случае N билетов, где при случайном выборе билета вероятность получения максимального приза равна 1/N (если N = 100, то это всего-то 1 %), схожим образом можно обеспечить себе большую вероятность выбора билета с максимальным выигрышем: пропускаем N/e билетов (e ≈ 2,718281828… – основание натурального логарифма, см. также задачу № 85), а после выбираем билет с первой максимальной (большей всех предыдущих) суммой приза. В этом случае вероятность угадать составляет 1/e ≈ 0,37, это больше, чем один к двум, очень хорошие шансы! Подробнее – в книге Ф. Мостеллера «Пятьдесят занимательных вероятностных задач с решениями».

<p>82. Пельменный чемпион</p>

В Омске проводят конкурс по поеданию пельменей – кто осилит больше. К финалу допускаются только те, кто способен съесть не менее сотни. В финал вышли четверо: Александр, Борис, Владимир и Геннадий. Известно, что победил Александр, Борис с Владимиром на пару съели 599 пельменей, а всего в финале их уничтожили ровно 1000 штук.

Сколько же съел победитель?

Варианты ответов

1. 300 пельменей.

2. 301 пельмень.

3. 302 пельменя.

Правильный ответ:2

Для краткости обозначим съеденное каждым «спортсменом» по первым буквам их имен: А, Б, В и Г. Мы знаем, что А + Б + В + Г = 1000, Б + В = 599 (и, значит, А + Г = 401) и что А, Б, В, Г ≥ 100. Отсюда следует, что А ≤ 301, но тогда Александр может быть победителем только при условии, что Борис съел 300, а Владимир 299 (или наоборот, что нам совершенно неважно – мы не интересуемся занявшими второе и третье места; важно, что если кто-то из них слопал 301 или больше, то Александр уже никак не может победить), Геннадий съел ровно 100, а Александр 301 пельмень. Это и есть ответ.

<p>83. Землекопы</p>

Три землекопа могут вскопать 1 га за 2 ч. За какое время им удастся вскопать 3 га, если прикомандировать к ним еще двух столь же работоспособных землекопов?

Варианты ответов

1. За те же 2 ч.

2. За 2 ч 40 м.

3. За 3 ч 36 м.

Правильный ответ:3

Если действовать по всем правилам, то сначала нужно посчитать производительность одного землекопа – это 1/3 га за 2 ч, т. е. 1/6 га/ч. Теперь, чтобы найти время обработки 3 га пятью землекопами, нужно взять 3 га, разделить на производительность одного землекопа и на число землекопов, получим 18/5 = 3,6 ч, или 3 ч 36 м. Но можно и грубо прикинуть, без детальных расчетов: объем работ вырос втрое, а производительность бригады в 5/3 ≈ 1,7 раза. Вспоминая, что 1,7 – это примерное значение √3, сразу получаем, что время работы должно увеличиться где-то в те же 1,7 раза. Из предложенных вариантов ответа только третий близок к этому значению, его и берем.

<p>84. Считаем в уме I</p>

Чему равняется произведение 748 × 1503?

Варианты ответов

1. 1 096 124.

2. 1 124 244.

3. 1 244 124.

Правильный ответ:2

Казалось бы, что может быть интересного в перемножении двух чисел? Берешь калькулятор и считаешь. Но с калькулятором и правда ничего интересного – иное дело попробовать посчитать в уме. Со всеми такими задачами главное – считать не в лоб, а попытаться увидеть, как можно облегчить себе работу. В конкретном нашем примере запишем 748 как (1500 – 4)/2, а 1503 как (1500 + 4) – 1, тогда получим: 748 × 1503 = (1500 – 4) (1500 + 4)/2 – 748. Вспоминая, что (a – b) × (a + b) = a² – b², получаем: 748 × 1503 = 1500²/2 – 4²/2 – 748 = 2 250 000/2 – 756 = 1 125 000–756 = 1 124 244. Возможность посчитать в уме (хотя бы приближенно, не всегда нужна совершенная точность) – очень важный навык. Знаменитый физик Ричард Фейнман посвятил этому целую главу в своей книге «Вы, конечно, шутите, мистер Фейнман!»[8], там он вычисляет в уме не только произведения, но и логарифмы, и кубические корни.

<p>85. Считаем в уме II</p>

С точностью до третьей значащей цифры посчитайте в уме корень 100-й степени из числа e (e = 2,718281828… – основание натурального логарифма). Это будет:

Варианты ответов

1. 1,01.

2. 1,04.

3. 1,11.

Правильный ответ:1
Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное