Читаем Озадачник полностью

– Представляешь, вчера проколол колесо, снимаю его, ставлю запаску – а гаек-то и нет, ни одной! Куда подевал, не пойму – то ли с обочины скатились, то ли просто не вижу, вечер, темно уже, фонаря нет.

– Во дела! И что же ты, эвакуатор вызвал?

– Да нет, прикрутил колесо, исхитрился!

– Да ну ладно, как это вообще возможно?

А и правда, как?

Варианты ответов

1. Нашел гайки где-то в машине.

2. Остановил попутку, у водителя которой оказались запасные гайки.

3. Никак – это придуманная, причем малоправдоподобная байка.

Правильный ответ:1

Если бы у водителя оставалась хотя бы одна гайка, это уже было бы решением: закрутил потуже – и можно ехать, очень аккуратно и небыстро, но можно. Но где же ее взять? Есть ли в машине еще такие же гайки? Конечно, есть – на трех оставшихся колесах, обычно по четыре на каждом (иногда – по пять, но для простоты будем считать, что четыре). Если открутить по одной с каждого колеса, то там останется еще по три, и три гайки освобождаются – ими и прикручиваем запаску. Получается довольно надежное крепление – до шиномонтажа точно хватит.

<p>32. На шахматной доске</p>

Маленький Алеша втихаря испортил шахматную доску – на каждой клетке написал маркером по числу (все числа – натуральные, т. е. положительные целые) и при этом (вот же хитрец!) расположил их так, что в каждой строке и в каждом столбце получившейся таблицы число в клетке, расположенной не у края доски, есть среднее арифметическое от суммы двух его ближайших соседей. Какие числа стоят в углах доски, если известно, что их сумма равна 28?

Варианты ответов

1. 7, 7, 7, 7.

2. 2, 12, 2, 12.

3. 1, 7, 13, 7.

Правильный ответ:1

Эту в общем математическую задачу можно решить логически – методом угадывания. О, зря смеетесь, это очень мощный метод! Например, им с успехом пользовался физик Я. Б. Зельдович, признававшийся: «Я решаю только те задачи, на которые уже знаю ответ». (В «Озадачнике» мы его тоже уже задействовали – см. задачу № 25.) Итак, в каком же самом простом случае число есть среднее арифметическое двух других? Когда все три числа равны между собой. Допустим, все числа на доске равны одному и тому же числу – тогда это число 7 (четыре семерки в углах дают в сумме 28), и это и есть решение. Осталось доказать, что оно единственное, – просто наметим доказательство, не углубляясь в детали. Главное – показать, что каждая строка (столбец) нашей шахматной «таблицы» обязана быть арифметической прогрессией. Далее, поскольку все числа натуральные (никаких отрицательных или не целых), то прогрессии неодинаковых чисел с наименьшей суммой значений в углах – это 1, 2, 3, 4, 5, 6, 7, 8; 2, 3, 4, 5, 6, 7, 8, 9; и т. д. – до 8, 9, 10, 11, 12, 13, 14, 15 – т. е. сумма «углов» равна 1 + 8 + 15 + 8 = 32, меньше чем 32 не получится ни при каких раскладах. Значит, наше решение единственное, все в порядке.

<p>33. Без семьи</p>

Юноша, полностью изобличенный в ужасном преступлении – двойном убийстве собственных родителей, обращается с последним словом к суду и просит о снисхождении. Выслушав его, судья отмечает, что столь циничной речи ему прежде слышать не доводилось, и назначает максимальное наказание, которое предусматривает Уголовный кодекс для такого вида преступлений. Что же такого сказал убийца?

Варианты ответов

1. Изложил свои мотивы и спросил судью: мол, а как вы бы поступили на моем месте, ваша честь?

2. Сослался на то, что его близкое родство с жертвами преступления является смягчающим обстоятельством.

3. Сослался на бóльшую, в сравнении с другими душегубами, тяжесть своего положения.

Правильный ответ:3

Автор очень доволен – удалось слепить неплохую задачку из старого анекдота. Даже если вы его не знаете (или не вспомнили), на что и был расчет, то вы легко определите правильный вариант ответа простым логическим рассуждением. Первая версия отметается сразу – подобную реплику мог произнести любой преступник («Я хотел есть и поэтому ограбил продуктовую лавку, а как бы вы поступили на моем месте?», «Я увидел, как он смотрит на мою жену, и немедля зарезал его – а как бы вы…» и т. д.). Вторая – также, никогда знакомство или родство с жертвой не было поводом для снисхождения к убийце. Методом исключения остается только третий вариант. Так что же он сказал судье? «Ваша честь, я прошу оказать мне милость и смягчить наказание, ведь я теперь КРУГЛЫЙ СИРОТА!»

<p>34. Радиофобия</p>

– Не смей выходить сегодня из дома! Это очень опасно, по радио сказали, что радиационный фон в десять раз превышает норму! – Жена взывала к осторожности своего супруга, но тот не внял ее просьбе и как ни в чем не бывало ушел на работу. Насколько рискованно он поступил?

Варианты ответов

1. Рискованно и глупо, десятикратное превышение – это вам не шутки.

2. Он ничем не рисковал.

3. Если работа недалеко (меньше 30 минут пути), то риска нет – он просто не успеет получить большую дозу облучения.

Правильный ответ:2
Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное