В 1687 году Ньютон представил миру свою механику и закон всемирного тяготения, которые называл «Системой мира». За последующие десятилетия их правильность не раз триумфально подтверждалась. За это время многие астрономы осуществили гораздо более точные наблюдения за движениями небесных тел, а другие исследователи провели гораздо более точные вычисления разнообразных эффектов, вытекающих из ньютоновской теории. Почти все наблюдения соответствовали предсказаниям.
Однако два противоречия нарушали эту благостную картину. Они касались движения Урана и Меркурия. Предсказания теории Ньютона и наблюдаемые положения этих планет расходились. Расхождения были сравнительно небольшими — намного меньше, чем, скажем, размер Луны в небе, но тем не менее вызывали сомнения. Либо в расчетах что-то не учитывалось, либо теория была ошибочной. Загадка требовала ответа.
Когда чрезвычайно успешная во всех прежних ситуациях теория сталкивается с противоречием, первая мысль, которая приходит на ум: чего-то не хватает. Исходя из этого, Джон Коуч Адамс и Урбен Леверье[132] предположили существование еще одной неизвестной планеты, гравитация которой могла сбивать Уран с курса. Другими словами, они предположили, что здесь действует очень специфический вид темной материи.
Адамс и Леверье рассчитали, где должна быть новая планета и где она должна появиться на ночном небе. Леверье сообщил о своем предположении Берлинской обсерватории. И наблюдатели ее увидели. Новую планету, открытую в 1846 году, назвали Нептуном.
Леверье попытался аналогично решить проблему с Меркурием: предположил существование еще одной планеты, которую назвал Вулканом. Вулкан должен был располагаться очень близко к Солнцу, чтобы его гравитация повлияла на Меркурий, но не оказала заметного действия на другие планеты. Это также объяснило бы, почему Вулкан не наблюдался: за мощью солнечного излучения трудно что-либо разглядеть.
Астрономы задались целью обнаружить Вулкан. Особенно тщательно его искали во время солнечных затмений, многие даже сообщали об успехе. Но ни одно наблюдение не убедило научное сообщество, и проблема усугубилась. В итоге решение пришло совсем с другой стороны и многим позже.
Альберт Эйнштейн предложил принципиально новую теорию гравитации. Хотя теория Ньютона и общая теория относительности основаны на радикально разных идеях, они делают много схожих предсказаний. В пределах Солнечной системы, безусловно, самое значительное (но все равно небольшое) расхождение касается движения Меркурия. Одним из первых триумфальных достижений теории Эйнштейна, уже вошедших в его оригинальную статью, была ее способность объяснить наблюдаемое движение Меркурия, не вводя дополнительную планету. Вулкан больше не вспоминали.
Открытие темной энергии потребовало изменения закона тяготения, и Эйнштейн модифицировал его с позиций общей теории относительности. Он учел темную энергию, дав ей другое название — «космологическая постоянная». В рамках концепций общей теории относительности это, по сути, был единственный способ изменить закон тяготения — ввести такой вот «свободный параметр». Когда Эйнштейн работал над уравнением, еще не существовало наблюдений, которые требовали бы ненулевой космологической постоянной, и в духе бритвы Оккама[133] Эйнштейн приравнял ее к нулю. Но она могла бы принять и ненулевое значение, если бы того потребовали наблюдения.
Подводя итог этим историческим параллелям, можно в шутку сказать, что темную материю породил Нептун, а темную энергию — Меркурий. А мораль в том, что у хороших научных загадок часто находятся достойные отгадки.
Темная материя
Современная проблема темной материи затрагивает всю Вселенную. Астрономы сталкиваются со множеством «избыточных» ускорений разных масштабов. Здесь я упомяну два класса наблюдений, которые охватывают десятки, если не сотни документально подтвержденных примеров.
Первый класс касается скорости, с которой звезды и газовые облака на внешних окраинах галактик вращаются вокруг этих галактик. Один из законов Кеплера, который, как мы знаем сегодня, следует из обеих теорий гравитации — Ньютона и Эйнштейна, — связывает скорость вращения по орбите с количеством находящейся у нее внутри массы. Таким образом, по этой скорости можно предположить, как распределяются массы в интересующей нас галактике. Но обнаружилось, что для объяснения наблюдаемых скоростей требуется наличие большой массы в местах, где излучается мало света. Практически все изученные галактики как будто окружены ореолами из темной (невидимой) материи. На самом деле правильнее сказать, что освещенная часть галактики — инородная примесь в облаке темной материи. И гало темной материи в сумме весит примерно в шесть раз больше, чем эта «примесь».