К формированию нового подхода привело прежде всего развитие небесной механики — дисциплины, описывающей движение объектов на небесном своде. Уже к XVII веку она была хорошо развита.
Задолго до возникновения письменной истории люди установили многие закономерности — чередование ночей и дней, времен года, фаз Луны, — а также изучили регулярное перемещение звезд. С развитием сельского хозяйства стало важно следить за сменой сезонов, чтобы сажать и собирать урожай в наиболее подходящее время. Еще одну мощную, хотя и ошибочную, мотивацию для точных наблюдений за небесными светилами обеспечила астрология — вера в то, что человеческая жизнь напрямую связана с космическими ритмами. В любом случае по тем или иным причинам, а нередко и просто из любопытства, люди внимательно изучали небо.
Выяснилось, что подавляющее большинство звезд движется довольно простым и предсказуемым образом. Сегодня мы интерпретируем это кажущееся движение как результат вращения Земли вокруг своей оси. «Неподвижные звезды» находятся так далеко от нас, что относительно небольшие их смещения либо из-за собственного движения, либо из-за движения Земли вокруг Солнца невидимы без приборов. Но есть исключения: Солнце, Луна и несколько «странников» (
Древние астрономы веками записывали положение этих особых объектов и в конце концов научились предсказывать его изменения достаточно точно. Эта задача требовала геометрических и тригонометрических расчетов по сложным, но четко определенным инструкциям. Птолемей (ок. 100–170) обобщил все эти сведения и создал на их основе математический текст, получивший название «Альмагест». (
Второй недостаток труда Птолемея более очевиден: приведенные данные были неточными. Тихо Браге (1546–1601), предвосхищая наступление сегодняшней эпохи Большой науки[6], разработал сложные инструменты и потратил много денег на строительство обсерватории, что позволило наблюдать положения планет с гораздо большей точностью. Новые наблюдения выявили явные отклонения от предсказаний Птолемея.
Иоганн Кеплер (1571–1630) задался целью создать геометрическую модель движения планет, которая была бы и простой, и точной. Он использовал идеи Коперника и внес другие важные технические поправки в модель Птолемея. В частности, он заменил форму орбит, по которым планеты движутся вокруг Солнца, с простого круга на эллипс[7]. Кеплер также предположил, что скорость движения планет вокруг Солнца не является постоянной: чем дальше от Солнца по эллиптической орбите, тем медленнее движение, чем ближе к Солнцу — тем быстрее движется планета[8]. Новая, более простая модель работала значительно лучше.
А мы тем временем вновь обратим взор на поверхность Земли, где Галилео Галилей (1564–1642) тщательно исследовал простые формы движения, такие как качение шаров по наклонной плоскости и колебание маятников. Такие простые исследования, в которых численные интервалы времени сравнивались с пройденными за это время расстояниями, казалось бы, совершенно не связаны с серьезными вопросами о том, как устроен мир. И безусловно, большинству современников Галилея, размышлявших над важнейшими вопросами философии, эти проблемы виделись тривиальными. Но Галилей стремился к иному уровню понимания. Он хотел
Исаак Ньютон (1643–1727) свел воедино геометрию Кеплера, теорию движения планет и динамическое описание движения земных объектов, сделанное Галилеем. Он продемонстрировал, что и теорию движения планет Кеплера, и теорию Галилея для специальных случаев движения лучше всего считать частными проявлениями общих законов — законов, применимых ко всем телам, везде и всегда. Теория Ньютона, которую мы теперь называем классической механикой, стала триумфом: она в том числе объяснила приливы на Земле, предсказала траектории комет и расширила возможности инженерии.