Каждая из четырех фундаментальных сил играет в этой истории свою роль, и все они решающие. Гравитация удерживает Землю на оптимальном расстоянии от Солнца — таком, где достигается равновесная температура. Электромагнитная сила — квантовая электродинамика — соединяет атомы в молекулы. Сильное взаимодействие — квантовая хромодинамика — обеспечивает притяжение, делающее возможным ядерное горение. А благодаря слабому взаимодействию ядерное горение происходит медленно.
Новые места, новые технологии, новые разумные существа
Принцип, согласно которому человеческая деятельность выражается через потоки информации в динамически сложной системе, а не через детальные химические и физиологические описания, расширяет кругозор и освобождает сознание. Он наталкивает на мысль, что разумные существа могут появиться и в других уголках Вселенной, и подготавливает к тому, что мы должны включить их в свой круг эмпатии.
Для благополучного существования нам требуются особые условия, в том числе температура, не выходящая за пределы узкого диапазона, воздух, содержащий особую смесь молекул и свободный от токсинов, надежное обеспечение водой и питательными веществами, а также защита от ультрафиолета и космических лучей. Эти условия сошлись в тонком слое над поверхностью Земли, но очень редки в других местах Вселенной. Колонизация космоса, притом что наши изнеженные тела приспособлены лишь к земным условиям, — безумно сложный проект.
Гораздо более простая, более реальная и не менее значимая задача — расширение нашей сферы влияния и информированности. Датчики и управляющие устройства, которые мы запускаем в космос, могут исследовать его, оставаясь с нами на связи.
Глубокое понимание материи дает нам возможность создавать и свои системы крупномасштабной динамической сложности. Они сильно отличаются от возникающих путем образования и разрыва химических связей. Мы можем дополнять или даже заменять химию электроникой и фотоникой.
Хороший пример — цифровая фотография. Здесь первичные датчики — приборы с зарядовой связью, или ПЗС-матрицы, — подсчитывают электроны, выбиваемые с их поверхности фотонами, и записывают полученные числа в виде массивов нулей и единиц, зашифрованных с использованием определенного формата. Эта информация кодирует изображение. Ее можно обработать разными способами — например, удалить шум, выделить интересующие области или как-либо еще улучшить качество, — а затем преобразовать обратно в изображения, используя дисплеи. Вся обработка выполняется на компьютерах или специализированными микросхемами. Фотопластинки, проявители, закрепители и темные комнаты, использовавшиеся фотографами прошлого, создавали ауру романтики и тайны, но, увы, делали съемку намного более долгой и трудной. Сейчас их практически не применяют.
Изменяющиеся шаблоны связей и управляемая с помощью химических реакций деятельность нашего мозга сегодня кажутся апогеем динамической сложности. Но важность других вариантов ее реализации возрастает, и остается много возможностей для их развития.
Современные компьютеры хранят и обрабатывают информацию не в виде упорядоченных и перегруппированных атомов или молекул, а в виде электронов. При этом требуется намного меньше энергии, как и времени на обработку. Для отображения информации в каждой из миллиардов или триллионов маленьких ячеек памяти создается либо высокая концентрация электронов (что приводит к низкому напряжению, интерпретируемому как 0), либо низкая концентрация электронов (что приводит к высокому напряжению, интерпретируемому как 1). Таким образом, мы создаем комбинаторный взрыв условно стабильных единиц. Это универсальная платформа для получения динамической сложности.
Для записи 0 и 1 также можно использовать направления спинов электронов — вверх или вниз. Управление ими — более тонкая работа, но в принципе это быстрее и эффективнее с энергетической точки зрения. Мы также можем работать с фотонами вместо электронов и контролировать их концентрацию (амплитуду), цвет (длину волны) или спин (поляризацию).
У этих новых систем, пришедших на смену химическим, много преимуществ в скорости, размере и энергоэффективности. Они также позволяют лучше использовать все многообразие квантового мира контролируемым образом[89]. В частности, они вот уже долгое время помогают распространять экспансию человеческого разума на огромные расстояния в космосе.
Что может пойти не так
Чем больше сила, тем больше ответственность[90].
Главный вывод из наших основных принципов таков: есть много пространства, много времени и много материи и энергии. Физический мир рисует нам — людям — перспективы намного более долгого и богатого будущего, чем все прежние. Если, конечно, мы его не взорвем.