Как уже говорилось выше, на основании работы Планка Эйнштейн предположил, что свет распространяется дискретными порциями — частицами, которые он назвал квантами света, а мы называем фотонами. Изначально физическое сообщество приняло идею Эйнштейна прохладно: было сложно совместить представление о том, что свет — это частицы, с описанием света на основании полей Максвелла. На счету теории Максвелла было много побед, включая эпохальное открытие Герца; ее подтверждали детальные исследования новых форм излучения.
Непрерывные в пространстве поля казались чем-то в корне отличным от частиц. Несмотря на экспериментальные свидетельства, трудно было представить, что свет может быть и тем и другим. Но позже эти противоречивые проявления его природы объединила концепция квантового поля.
В соответствии с названием квантовые поля остаются полями — заполняющей пространство средой. Есть квантовая версия и электрических, и магнитных полей. Они по-прежнему удовлетворяют уравнениям Максвелла, которые физики девятнадцатого столетия получили, еще ничего не зная о квантовой механике, а также некоторым дополнительным. Последние имеют отпугивающее название «коммутационные соотношения», но я буду называть их менее формально — «квантовые условия». Они — математическое выражение самой сути квантовой механики.
Общую идею квантовых условий предложил Вернер Гейзенберг в 1925 году, когда ему было двадцать четыре года. Вскоре, в 1926 году, Поль Дирак вывел квантовые условия с учетом специфики электрического и магнитного полей. Дираку тоже было двадцать четыре.
Чем больше уравнений, которые надо удовлетворить, тем меньше у них решений. Как мы уже говорили, Максвелл обнаружил, что свет — своего рода самовоспроизводящееся, движущееся возбуждение электрического и магнитного полей. Однако не все его решения удовлетворяют квантовым условиям — например, определенному соотношению между энергией возбуждения и его частотой (то есть скоростью осцилляций поля). Я сформулирую это важное соотношение как на словах, так и в виде простого уравнения. На словах оно звучит так: энергия возбуждения должна равняться произведению отличной от нуля постоянной, которая называется постоянной Планка, на частоту. В форме уравнения получаем:
Эта великая история об электромагнитных полях и фотонах ведет непосредственно к еще одному ключевому моменту: объясняет, зачем и как природа производит такое огромное количество взаимозаменяемых «деталей». Если бы наш список фундаментальных составляющих закончился элементарными частицами, без ответа остался бы важнейший вопрос. Ведь на этом уровне мы должны постулировать, что каждый тип частиц существует во множестве идентичных копий: много одинаковых фотонов, электронов и так далее.
В истории промышленного производства введение стандартизованных, взаимозаменяемых деталей было великим открытием. Чтобы не отступать от шаблонов, потребовалось изобрести новые механизмы и материалы. И даже тогда многие детали изнашивались, ломались и деформировались со временем. С другой стороны, согласно наблюдениям, свойства фотонов одинаковы, где бы и когда бы мы их ни обнаружили. Независимо от источника свет данного цвета имеет одни свойства и одинаково взаимодействует с материей. Одинаковы и электроны, где бы они ни обнаруживались. Если бы, например, свойства электронов в разных атомах углерода не были идентичны, сами атомы также обладали бы разными свойствами и законы химии не работали бы.
Как природе это удается? Только проследив происхождение всех фотонов до общего, универсального магнитного поля, мы приходим к пониманию их единообразия. И, ведомые аналогией, мы вводим поле (назовем его электронным), возбуждениями которого являются электроны. Свойства всех электронов одинаковы, поскольку каждый является возбуждением одного и того же универсального поля.
Поля нужны для достижения локальности, а квантовые поля производят частицы. Теперь мы лучше понимаем, почему частицы существуют и почему они столь удивительно взаимозаменяемы. Нет необходимости вводить два разных сорта фундаментальных составляющих реальности — поля и частицы. Господствуют поля. А именно квантовые поля.
Если вернуться к истокам полевой концепции — к попыткам Фарадея представить себе влияние электричества и магнетизма на пространство, — становится понятно, как еще квантовые поля унифицируют наше представление о мире. Те же самые поля, порождающие фотоны, в соответствии с представлениями Фарадея — и уравнениями Максвелла — порождают электрические и магнитные силы.
Подведем итог.