Изучая поведение материи при энергиях более высоких, чем те, которые были доступны в начале ХХ века, мы обнаруживаем отдельные фотоны, энергия и импульс которых достаточно велики. По этой причине их гораздо проще отождествить с частицами. Фотоны высокой энергии известны как гамма-лучи. С помощью счетчика Гейгера можно услышать, как гамма-лучи — щелчок за щелчком — объявляют о своем прибытии.
Как электроны и ядра, фотоны следует считать составными частями атомов. Действительно, по природе фотоны — это «глюоны»[53]. Именно фотоны — электрические поля в их коллективном воплощении — склеивают атомы, связывая электроны и ядра.
А вот протоны и нейтроны не относятся к элементарным частицам: их поведение слишком сложно. Легко описать модель протонов и нейтронов, которую мы используем сегодня, но построить и обосновать ее было нелегко. В целом она походит на модель атомов. Два типа похожих на электроны частиц — их называют
Хотя в главном эти модели сходны, есть существенные различия в том, как «собраны» атомы (из электронов, фотонов и ядер) и протоны (из кварков и глюонов).
• Электромагнитное взаимодействие, обусловленное электрическим зарядом, гораздо слабее сильного взаимодействия, обусловленного цветным зарядом. Именно поэтому размер ядра атома, в котором протоны и нейтроны прочно связаны сильным взаимодействием, гораздо меньше размера самого атома.
• Электроны всегда отталкиваются друг от друга. Однако поскольку цветов три, то силы, связывающие кварки, сложнее и могут быть силами притяжения. Благодаря такой возможности кваркам, в отличие от электронов, для связи не требуются «ядра», состоящие из чего-то, отличного от них самих.
• В то время как фотоны электрически нейтральны, цветные глюоны — их аналоги, отвечающие за сильное взаимодействие, — сами несут цветной заряд. Глюоны чувствуют сильное взаимодействие так же, как кварки (на самом деле даже сильнее). И это еще одна причина, в силу которой протоны и нейтроны более однородны, чем атомы. Носители взаимодействия сами в нем тоже участвуют.
Чтобы завершить описание кварков и глюонов, нужно рассказать об их массах[54]. С глюонами все просто: масса глюонов, как и фотонов, равна нулю. Главное, что надо знать о кварках, — то, что их массы велики по сравнению с массой электрона, но очень малы в сравнении с массами протонов и нейтронов.
Может показаться парадоксальным, что масса протона гораздо больше масс того, из чего он состоит. На самом деле этот парадокс разрешим — благодаря выводу, что источником всей нашей массы (массы составляющих нас протонов и нейтронов) является энергия. И это высочайшее достижение человека в понимании природы.
Точно измерить массы
В наш список частиц построения следует добавить гравитоны — именно из них состоят гравитационные поля. Фотоны связывают атомы и молекулы; глюоны — кварки, протоны и атомные ядра; а гравитоны — планеты, звезды, галактики и вообще большие объекты.
Гравитоны никогда не регистрировались как отдельные частицы: поскольку электрический заряд у них нулевой, а цветной отсутствует, по отдельности они очень слабо взаимодействуют с обычной материей. Но каждая из перечисленных выше характеристик гравитонов непосредственно связана с наблюдаемыми свойствами сил, ими порождаемых. Мы наблюдаем действие гравитационных сил, а в последнее время и гравитационные волны. Все это результат кумулятивного действия множества отдельных гравитонов. Их масса равна нулю, поэтому они очень легко образуются в больших количествах.
Из-за относительно большого спина взаимодействия гравитонов сложнее, чем у других элементарных частиц. Ключевые черты теории гравитации Эйнштейна — общей теории относительности — следуют непосредственно из свойств гравитона, связанных со спином. И этот факт — впечатляющая демонстрация значимости наших трех основных атрибутов материи — массы, заряда и спина — для всеобъемлющего описания ее поведения. Путь, которым сам Эйнштейн пришел к созданию общей теории, был невероятно талантливым, но гораздо менее прямым.
На этом завершается наш обзор частиц — кирпичиков, из которых построена материя. Если вы впервые столкнулись с этими идеями, непривычные концепции и их конкретное воплощение могут с трудом укладываться в голове. Тем не менее главная мысль ясна: физический мир выстроен из очень небольшого числа разных составляющих. Более того, эти составляющие предельно просты в том смысле, что определяются всего несколькими характеристиками.