Наконец обсудим, как ученые исследуют самые маленькие расстояния. Первый эксперимент, позволивший заглянуть внутрь атома, был выполнен в 1913 году Гансом Гейгером и Эрнестом Марсденом под руководством Эрнеста Резерфорда. В эксперименте пучок альфа-частиц направлялся на золотую фольгу. Гейгер и Марсден фиксировали, на какие углы отклоняются прошедшие через фольгу альфа-частицы. Изначально они считали, что только небольшая доля частиц, если таковые вообще найдутся, существенно отклонится от курса. Альфа-частицы довольно массивны, так что только непосредственное столкновение с гораздо более тяжелыми объектами может изменить направление их движения. Если масса золотой фольги распределена равномерно, больших отклонений быть не должно[21].
То, что увидели Гейгер и Марсден, никак не совпало с их ожиданиями: значительное число частиц отклонилось на большой угол. Иногда альфа-частицы даже меняли направление движения на обратное. Позднее Резерфорд вспоминал о своей реакции на эти новости:
Это было самое невероятное событие в моей жизни. Результаты были почти столь же невероятными, как если бы вы стреляли 15-дюймовым снарядом в листок папиросной бумаги, а этот снаряд возвратился бы и поразил вас. При анализе этого я понял, что такое рассеяние назад должно быть результатом однократного столкновения, и, произведя расчеты, увидел, что это никоим образом невозможно, если не предположить, что подавляющая часть массы атома сконцентрирована в крошечном ядре. Именно тогда у меня и зародилась идея об атоме с крошечным массивным центром, в котором сосредоточен заряд[22].
Современное представление об атомах[23] родилось из детального анализа Резерфордом эксперимента Гейгера и Марсдена. Он нашел объяснение их данным: предположил, что б
Опыт Гейгера — Марсдена определил научную парадигму исследований субатомного мира, где с тех пор доминируют экспериментальные исследования фундаментальных взаимодействий. Бомбардируя мишени частицами со все более высокими энергиями и анализируя особенности их отклонения, мы изучаем внутреннюю структуру мишени. И здесь мы вновь строим интерпретационную лестницу: знания, приобретенные на каждой ступени, помогают нам ставить новые эксперименты и продвигаться в глубь материи.
За горизонтом
Мы не можем заглянуть дальше расстояния, которое преодолел свет с момента Большого взрыва. Оно определяет наш космический горизонт. Но с каждым днем Большой взрыв уходит все дальше в прошлое. Пространство, которое вчера было за горизонтом, открывается для обзора.
Несомненно, один день и даже тысяча лет — ничто в космических масштабах, и относительное увеличение видимой Вселенной практически незаметно для нас. Но ведь интересно понять, какую Вселенную смогут наблюдать наши далекие потомки, и задуматься над тем, что происходит за горизонтом. Одиссей в стихотворении Теннисона говорит:
Расширяющийся космический горизонт ставит много вопросов. Например, попадет ли под него вся Вселенная? Если пространство конечно, так однажды и произойдет. Примечательно, что конечное пространство не обязано быть ограниченным. Сфера, которая представляет собой поверхность шара, — пример конечного пространства, не имеющего границ. Поверхность обычного шара двумерна. Хотя это трудно представить наглядно, но для математиков проще простого определить трехмерное пространство, которое, как обычная сфера, конечно, однако при этом не имеет границ. Возможные формы конечной Вселенной следует искать среди подобных пространств.