Гигроскопичность окислителей — есть их способность притягивать воду, содержащуюся в воздухе, и удерживать ее в своем составе, что ухудшает сроки хранения составов, их воспламеняемость, а, в некоторых, случаях может вызвать несанкционированное воспламенение составов. Окислители могут содержать в себе различные количества воды, то притягивая ее из воздуха, то «выветриваясь», то есть подсыхая, зависит это от относительной влажности воздуха над окислителем или составом, в который он входит, и от окружающей температуры. Вопрос о гигроскопичности тех или иных окислителей достаточно сложен, очень упрощенно можно судить о гигроскопичности по растворимости конкретного вещества в воде, чем больше растворимость тем больше, как правило, и гигроскопичность. В практической пиротехнике есть ряд окислителей пригодных для приготовления практически всех типов пиротехнических смесей. В приведенном ряду окислители расположены в порядке увеличения гигроскопичности, то есть в порядке уменьшения их пригодности для приготовления пиротехнических смесей: KClO4; Ba(NO3)2; KMnO4; KClO3; NH4ClO4; Ba(ClO3)2; KNO3; Sr(NO3)2; NaNO3; NaClO3; NH4NO3.
Из ряда видно, что применение прекрасного окислителя НТА затруднительно из-за его большой гигроскопичности. При употреблении прессованных смесей с достаточным количеством нерастворимых в воде связующих веществ (цементаторов) и покрытия прессованных форм водонепроницаемым лаком, во многих случаях, можно пренебречь гигроскопичностью при условии смешения и прессования составов в условиях малой влажности воздуха. В технических требованиях на окислители особо отмечается нежелательность присутствия в них примесей хлоридов металлов, так как эти примеси значительно увеличивают гигроскопичность окислителей.
ГОРЮЧИЕ ВЕЩЕСТВА
Наилучший специальный эффект в пиротехнических составах дают горючие вещества имеющие максимальные температуры горения при сжигании их в атмосфере чистого кислорода, то есть горючие, выделяющие при сгорании наибольшее количество тепла (однако, между температурой горения и общим количеством выделяемого тепла связь не строго пропорциональна). Такие горючие называются высококалорийными. Однако, имеются составы, например, дымовые, в которых высокая температура горения нежелательна, поэтому для их приготовления используют горючие средней и низкой калорийности или осуществляют неполное сгорание горючего (например, сгорание углерода до CO, а не до CO2). Большое значение при выборе горючего играют физико-химические свойства продуктов его окисления, температура их плавления и испарения, способность к диссоциации, теплоемкость. Например, в осветительных и фотосоставах избыточное количество газообразных (в том числе и испарившихся) продуктов горения будет нежелательным, так как наибольшую светимость пламени придают, в основном, раскаленные твердые частицы, а на испарение окислов затрачивается большое количество тепла, то же верно и для диссоциации образующихся газов, поэтому при испарении и дальнейшей диссоциации части продуктов горения температура понизится, что уменьшит светосилу данных составов. Вообще степень диссоциации газа, образующегося при горении, имеет большое значение при оценке максимальной температуры горения, поскольку чем она меньше, тем до более высокой температуры может быть нагрет газ горения. Горючие, продукты горения которых имеют малую степень диссоциации, могут быть нагреты до высоких температур теплом реакции даже в случае сравнительно невысоких значений калорийности топлив (тепловых эффектов реакции горения). Прекрасным примером, иллюстрирующим это положение, служит сгорание газа дициана (CN)2, синтез которого из элементов требует затрат большого количества тепла (то есть процесс его образования эндотермичен), которое идет на образование тройных связей атомов азота с углеродом. Когда дициан сгорает полностью:
(CN)2 + 2O2 = 2CO2 + N2 + 2250ккал
тепловой эффект реакции равен 2250ккал/кг, но из за сильной диссоциации CO2 температура горения в этом случае не превышает 3500°С. При сгорании дициана с недостатком кислорода образуется смесь азота не с двуокисью углерода, как в первом случае, а с окисью углерода, при этом, смесь газов диссоциирует значительно меньше. Несмотря на недостаток кислорода для полного сгорания, а значит соответственного уменьшение теплового эффекта реакции, который составляет всего 1510ккал/кг, причем, теплоемкость газов увеличивается, температура горения все же увеличивается до 4800°С:
(CN)2 + O2 = 2CO + N2 + 1510ккал
Если сжигать дициан в недостатке озона (O3), то за счет дополнительной теплоты разложения озона температура горения может достигнуть 10000°С. Считается, что это наивысшая температура, которая может быть достигнута в результате химической реакции. Особенно большое значение величины теплоемкостей, образующихся при горении газов, и степень их диссоциации занимают в химии ракетных топлив в военной пиротехнике.