Читаем Основы пиротехники полностью

При горении составов, дающих при сгорании большое количество газов, в замкнутом или полузамкнутом объеме создается большое давление, скорость горения из-за увеличения теплопередачи значительно возрастает, горение становиться весьма бурным и может перейти во взрыв. Наиболее часто такое прогрессивное ускорение горения в оболочке, заканчивающееся взрывом, наблюдается в пиротехнических хлоратных и перхлоратных составах. В большинстве ТРТ предельное максимальное давление для устойчивого горения до перехода во взрыв составляет более 350кгс/с2, и это обстоятельство не создает трудностей при конструировании РДТТ, где среднее рабочее давление не более 70кгс/см2.

К сожалению, из-за недостатка места в данном упрощенном труде нет возможности более или менее подробно описать теорию горения и, в частности, зависимости скорости горения от множества не описанных здесь факторов. Теория горения разработана далеко не полностью, пример — теория которую предложил З.И. Фур. Согласно этой теории, прогрев конденсированной фазы происходит не за счет теплопередачи от пламени, а за счет тепла химических реакций, протекающих в поверхностных слоях горящего заряда и теплопроводности пиросоставов. Увеличение скорости горения от повышения давления объясняется так. Температура на поверхности горящего заряда, от которой зависит скорость реакции в поверхностных слоях, определяется степенью расширения газов, образующихся при горении. При повышении давления степень расширения газов уменьшается, температура их повышается и скорость горения увеличивается. Величина показателя степени n в законе Вьеля, согласно теории Фура, оказывается связанной не с порядком химической реакции, как это рассматривается в теории Я.Б. Зельдовича, а с показателем адиабаты расширения продуктов сгорания. Эта теория объясняет, например, механизм горения некоторых ТРТ и ВВ в вакууме и другие стороны этого процесса.

В заключение необходимо отметить, что скорость горения прессованных зарядов увеличивается при наличии в них трещин и пор, это связано с увеличением площади горения в связи с проникновением пламени по трещинам и порам к глубоким слоям заряда, воспламенением их, отрывом кусков топлива, дальнейшему росту трещин и так далее, вплоть до увеличения давления до критического и переходу его во взрыв.

Влияние теплообмена

Интенсивность теплообмена с окружающей средой также отражается на скорости горения пиросоставов. В связи с этим скорость горения в узких каналах (трубках) должна быть несколько меньше, но в узких каналах в большей мере затрудняется отток газов, создается избыточное давление, особенно, в случае быстрогорящих составов, и поэтому уменьшение скорости горения наблюдается не всегда. При очень малых диаметрах теплопотери становятся настолько велики, что состав вообще теряет способность к распространению горения. Величина предельного диаметра горения, зависит от целого ряда факторов: материала и толщины стенки трубки или канала, рецепта и плотности состава, начальной температуры и давления. Как правило, чем больше тепла выделяется при горении состава в единицу времени, то есть чем быстрее горит состав, тем меньше для него значение минимального диаметра. В связи с теплопотерями в окружающее пространство следует разобрать вопрос о минимально возможной скорости горения. Осуществить при нормальных условиях температуры и давления процесс горения имеющий очень малую скорость (примерно 0,001мм/сек), по-видимому, невозможно по той причине, что в следствии малого теплоприхода в единицу времени и относительно больших теплопотерь в окружающее пространство не удается создать той значительной разности между температурой в газовой и конденсированной фазах, которая является одной из самых характерных черт процесса горения.

Одной из самых медленно горящих смесей является смесь из 96% NH4NO3 и 4% древесного угля, горящая при давлении 1кгс/см2 и температуре 20°С (= 0,94г/см3) со скоростью V = 0,08мм/сек.

Принимаем приближенно объем газов, образующихся при горении смеси v = 700см3 / г и температуру горения 900°К, получаем скорость течения газов в пламени, а следовательно, и скорость их горения равной: U’ = 0,008 • 700 • / 293 17см/сек. Эта цифра близка к скорости горения самых медленно горящих газовых смесей. Я.Б. Зельдович указывает, что минимально возможная при нормальных условиях скорость горения газовой смеси СО + О2 должна составлять около 2см/сек. Из этого следует, что минимально достигнутая скорость горения может быть еще более снижена, возможно в смесях карбонилов металлов и легкоразлагаемых окислителей.

Влияние плотности

Увеличение плотности состава сильно уменьшает скорость горения большинства составов. Особенно сильно сказывается влияние плотности на характер горения фотосмесей — 1кг фотосмесей в порошкообразном состоянии сгорает в течении десятых долей секунды, а время сгорания такого же количества смеси, спрессованного под давлением около 1000кгс/см2, выражается уже несколькими десятками секунд.

Перейти на страницу:

Похожие книги

История ракетно-ядерной гонки США и СССР
История ракетно-ядерной гонки США и СССР

Документально-историческая книга рассказывает об истории и особенностях создания и развития ядерного и термоядерного оружия (ЯО) и средств его доставки. О возникновении планов ядерной войны (ЯВ) в условиях ядерной монополии США, на основе идеи «превентивной ядерной войны», а затем «концепции первого, обезоруживающего ядерного удара» по СССР. О героической борьбе СССР «за выживание» против страшной опасности ЯВ сразу после окончания II мировой войны.Анализируются исторические цели и направления политики США, как страны-колонизатора, ставшей империей, стремящейся к мировому господству. Рассказано о том, как цель мирового господства вызвала к жизни колоссальные затраты и объёмы накопления смертоносного ядерного потенциала США и, – в противовес ему, – ракетно-ядерного потенциала СССР, в течение десятков лет продолжающейся и ныне «холодной войны». Рассказано, как борьба за обретение колоний странами-колонизаторами привела мир к опасности полного уничтожения человечества в огне термоядерной войны.Книга охватывает широкий комплекс вопросов, связанных с техническими особенностями ЯО, испытаний, систем доставки ЯО, разведки, систем ПВО и ПРО, предупреждения о ракетном нападении, информационного обеспечения и других систем в ходе ракетно-ядерной гонки США и СССР (России).

Евгений Вадимович Буянов

Военное дело, военная техника и вооружение