Удовлетворительно формула работает только, если искомая температура не превышает 2000...2500°С, что недостаточно для большинства пиротехнических составов.
Определение реальной температуры горения расчетным путем достаточно сложная задача, так как приходится принимать множество допущений. Ричардс и Комтон установили, что для большинства простых веществ справедливо соотношение:
QS/TS = 0,002…0,003
где QS — теплота плавления [ккал/г-атом],
TS — температура плавления [°К].
Однако, эта зависимость достаточно точна не для всех простых веществ.
Скрытая теплота плавления также может быть вычислена по эмпирической формуле А.А. Шидловского:
QS/TS=0,002n
где n — число атомов в молекуле соединения.
Скрытая теплота испарения вещества не является неизменной, а, как правило, уменьшается с повышением температуры, при которой происходит испарение.
Зависимость между теплотой кипения QR [ккал/моль] и температурой кипения жидкости при 760 мм.рт.ст. TR [°К] выражается формулой Трутона:
QR/TR = 0,02n
или по эмпирической формуле Шидловского:
QR/TR = 0,011n
где n — число атомов в соединении
Относительно теплоемкости жидких веществ при температурах выше 1000°С указать определенные закономерности затруднительно, известно, что теплоемкость жидкого вещества больше его теплоемкости в твердом состоянии.
Для простых твердых веществ при температурах выше 1000°С можно считать, согласно Дюлонгу и Пти, что их грамм-атомная теплоемкость есть величина постоянная и равна приблизительно 6,4 кал/°С.
Для соединений в жидком состоянии при высокой температуре, в известной мере, справедливо экспериментальное правило Неймана-Коппа, согласно которому теплоемкость такого соединения равняется сумме атомных теплоемкостей составляющих его элементов.
Из сказанного ясно, что точное определение температуры горения расчетным путем достаточно проблематично и, в большинстве случаев, не имеет смысла, так как, во-первых, более надежно эта температура определяется экспериментально, а, во-вторых, может быть прикинута пиротехником на основании уже известной температуры горения исследованных составов.
Для ракетных топлив, естественно, требуется высокая точность расчета температуры горения и других характеристик продуктов горения, в этом случае выполняются компьютерные расчеты, при которых учитываются процессы диссоциации и испарения продуктов горения. Однако, поскольку основной характеристикой ракетных топлив является величина удельной тяги, точно измеряемой экспериментально, такие расчеты интересны только как метод теоретического анализа новых топлив.
В таблице 12 приведены температуры горения составов основных специальных эффектов горения.
Таблица 12. Назначение составов и максимальная температура в пламени
Составы
Максимальная температура в пламени [°С]
Фотоосветительные
2500.. .3500
Осветительные и трассирующие
2000... 2500
Зажигательные (с окислителем)
2000.. .3500
Ракетные (ТРТ)
2000... 2900
Составы сигнальных огней
1200... 2000
Дымовые
400... 1200
ВВ (температура подуктов взрыва)
1200.. 4300
ЧУВСТВИТЕЛЬНОСТЬ ПИРОТЕХНИЧЕСКИХ СОСТАВОВ К ТЕПЛОВЫМ, МЕХАНИЧЕСКИМ И ЭЛЕКТРИЧЕСКИМ ВОЗДЕЙСТВИЯМ
Под начальным импульсом подразумевается то минимальное количество энергии, которое необходимо для возбуждения реакции в пиротехническом составе. Чем меньше начальный импульс возбуждения реакции, тем чувствительнее состав к внешним воздействиям.
Для надежного воспламенения пиротехнического состава, в большинстве случаев, пользуются тепловым начальным импульсом. При работе с фотосмесями, некоторыми зажигательными составами (например, термобарическими) и при запуске пиротехнических самоликвидаторов различных систем в качестве начального импульса используют воздействие взрыва ВВ и этим сознательно вызывают взрыв в пиротехническом составе.
Испытание на чувствительность пиротехнических составов имеет целью предотвратить их несанкционированное воспламенение или взрыв либо найти правильные приемы воспламенения или взрыва, гарантирующие получение от состава необходимого специального эффекта.
Испытания включают определение:
1. Температуры самовоспламенения — проводится в бане из сплава Вуда, время индукции (выдержки состава) 5 минут.
2.Чувствительность к лучу огня — расстояние от воспламеняемого состава до открытого среза бикфордова шнура.
3.Чувствительность к удару — высота падения груза 10кг на площадь испытуемого состава в 0,5 см2 с навеской 0,05г. Либо работа удара в кг•м/см2, вычисляемого по формуле А = р • h/s, где: р — масса груза в килограммах, h — высота падения в метрах, s — площадь поперечного сечения действия удара в см2.
4. Чувствительность к трению — трение между вращающимися плоскостями или трение между подвижными роликами под определенной нагрузкой.
Реже проводятся испытания на определение следующих параметров:
1. Воспламеняемость от специальных воспламенительных составов (для пиротехнических составов, не воспламеняющихся непосредственно от форса пламени бикфордова шнура).