Читаем Основы пиротехники полностью

Во многих случаях специальный эффект пиротехнических составов повышается, если в процессе горения горючее окисляется не только кислородом окислителя, но также и кислородом воздуха. В этом случае повышается теплота горения состава, которая при прочих равных условиях тем больше, чем больше в нем будет содержаться полностью сгорающего горючего и меньше окислителя. Это возможно тогда, когда в окислении принимает участие кислород воздуха, который должен легко окислять применяемое в составе горючее.

Наиболее распространенным горючим, сгорание которого в составе может происходить также и за счет кислорода воздуха, является магний. Во многих случаях могут применяться составы, где лишь половина магния окисляется за счет кислорода окислителя, другая же половина сгорает за счет кислорода воздуха.

Трудноокисляемые горючие (грубодисперсные частицы алюминия, кремния) должны полностью окисляться кислородом окислителя, так как они не могут полностью сгореть за счет кислорода воздуха.

Количество горючего, которое может сгореть за счет кислорода воздуха определяется опытным путем, сжиганием исследуемого горючего с различным количеством окислителя и последующим анализом продуктов горения. Пиротехнические составы, содержащие в себе избыток окислителя сверх того, что необходимо для полного окисления горючего, называют составами с положительным кислородным балансом, однако, избыток окислителя, не участвующий в процессе горения, является безусловно вредным и в пиротехнике практически не применяется кроме специальных случаев, например, в хлоратных кислородных свечах (смотри раздел "Пиротехнические источники газов").

Составы, содержащие в себе количество окислителя, необходимое для полного сгорания горючего до высших окислов, называют составами с нулевым кислородным балансом.

Составы, содержащие в себе окислитель в количестве недостаточном для полного окисления горючего называют составами с отрицательным кислородным балансом.

Большинство применяемых в настоящее время пиротехнических составов являются составами с отрицательным кислородным балансом.

Под термином "кислородный баланс ( n ) состава" понимают то количество кислорода в граммах, добавление которого необходимо для полного окисления всего горючего в 100 г состава.

Отношение количества окислителя, которое содержится в составе, к количеству окислителя, необходимому для полного сгорания всего содержащегося в составе горючего, называют коэффициентом обеспеченности состава окислителем ( k ). Кислородный баланс, при наличии которого в составе получается наилучший специальный эффект, называют оптимальным кислородным балансом.

При расчетах двойных смесей магния или алюминия с нитратами щелочных или щелочноземельных металлов используются понятия "активный" и "полный" кислородный баланс.

"Активный" баланс - это отдача окислителем только непрочно связанного, так называемого "активного" кислорода.

Sr(NO3)2 + 5Mg = SrO + N2 + 5MgO

"Полный" баланс - в расчет принимается весь кислород, содержащийся в окислителе, а уравнение составляется так, как будто металл, содержащийся в окислителе восстанавливается до свободного состояния.

Sr(NO3)2 + 6Mg = Sr + N2 + 6MgO

Составы с "полным" кислородным балансом фактически являются составами с отрицательным кислородным балансом, поскольку только в редких случаях окислитель может отдать весь содержащийся в его составе кислород на окисление горючего.

При расчете составов с отрицательным балансом задается необходимый кислородный баланс в граммах кислорода.

Пример: рассчитать двойную смесь хлората калия с магнием, при условии что ее кислородный баланс n = - 20г O2, то есть недостаток кислорода для сгорания состава с указанным n составит 20г, каковое количество будет подчерпнуто из воздуха.

В таблицах 1 и 4 находим для хлората калия и магния числа 2,55 и 1,52, соответственно. Вычисляем, что 20г кислорода окисляют 20 • 1,52 = 30,4г магния.

Остающиеся 69,6г состава должны быть рассчитаны обычным путем на нулевой кислородный баланс.

Содержание хлората калия в составе (2,55 • 69,6) / (2,55 + 1,52) = 43,6%. Магния в составе будет 100 - 43,6 = 56,4%. За счет кислорода окислителя будет сгорать 56,4 - 30,4 = 26,0% магния.

Коэффициент обеспеченности горючего окислителем будет в данном случае равен k = 26,0 / 56,4 = 0,46.

Аналогичный расчет может быть осуществлен и для многокомпонентных смесей.

Вычисление кислородного баланса n и коэффициента k в готовых составах дает возможность судить о степени необходимости горящего состава в контакте с кислородом воздуха, выяснить причины искрения состава, возможность его затухания и тому подобное.

Порядок вычисления n и k для имеющихся готовых составов показан в примере.

Пример: рассчитать n и k для состава желтого огня, имеющего рецепт:

Из таблицы 1 и 5 находим, что для сгорания в углекислый газ и воду 0,47г шеллака или 8,37г оксалата натрия необходимо 2,55г хлората калия, следовательно, для сгорания 15г шеллака требуется (2,55 • 15) / 0,47 = 81,5г хлората калия, а для сгорания 25г оксалата натрия требуется (2,55 • 25) / 8,37 = 7,6г хлората калия.

Перейти на страницу:

Похожие книги

История ракетно-ядерной гонки США и СССР
История ракетно-ядерной гонки США и СССР

Документально-историческая книга рассказывает об истории и особенностях создания и развития ядерного и термоядерного оружия (ЯО) и средств его доставки. О возникновении планов ядерной войны (ЯВ) в условиях ядерной монополии США, на основе идеи «превентивной ядерной войны», а затем «концепции первого, обезоруживающего ядерного удара» по СССР. О героической борьбе СССР «за выживание» против страшной опасности ЯВ сразу после окончания II мировой войны.Анализируются исторические цели и направления политики США, как страны-колонизатора, ставшей империей, стремящейся к мировому господству. Рассказано о том, как цель мирового господства вызвала к жизни колоссальные затраты и объёмы накопления смертоносного ядерного потенциала США и, – в противовес ему, – ракетно-ядерного потенциала СССР, в течение десятков лет продолжающейся и ныне «холодной войны». Рассказано, как борьба за обретение колоний странами-колонизаторами привела мир к опасности полного уничтожения человечества в огне термоядерной войны.Книга охватывает широкий комплекс вопросов, связанных с техническими особенностями ЯО, испытаний, систем доставки ЯО, разведки, систем ПВО и ПРО, предупреждения о ракетном нападении, информационного обеспечения и других систем в ходе ракетно-ядерной гонки США и СССР (России).

Евгений Вадимович Буянов

Военное дело, военная техника и вооружение