Последующий переход - от проектирования к реализации - это просто движение от одного явного вида к другому: форма при проектировании более абстрактна и ближе к математическим понятиям, а при реализации более конкретна и ближе к компьютеру, но обе они являются явными. Этот переход менее драматичен, чем предыдущий - действительно, при дальнейшем чтении станет понятно, что объектная технология почти стирает различие между проектированием и реализацией. При хорошей системе ОО-нотации нашими компьютерами непосредственно выполняется (с помощью компиляторов) то, что в не ОО-мире часто рассматривалось бы как проекты.
Соотношение классов и записей
Другим замечательным свойством объектной технологии является то, что при ней можно сохранять неявные описания гораздо дольше, чем при других подходах. В последующих лекциях будет введена система обозначений, позволяющая определять класс в виде:
class POINT feature
x, y: REAL
end
Это выглядит подозрительно похожим на приведенное выше определение записи в Паскале. Но, несмотря на внешнее сходство, определение класса другое - оно неявное! Эта неявность проявляется при наследовании: автор класса или (что еще более интересно) кто-либо другой может в любой момент определить новый класс, например:
class MOVING_POINT inherit
POINT
feature
mass: REAL
velocity: VECTOR [REAL]
end
который расширяет исходный класс совершенно незапланированным способом. Тогда переменная (или сущность, если использовать вводимую далее терминологию) типа
p1: POINT
может быть связана с объектом не только типа
p1 := mp1
где mp1 имеет тип MOVING_POINT.
Эти возможности иллюстрируют неявность и открытость определения класса: соответствующие экземпляры представляют не только точки в узком смысле, т. е. непосредственно экземпляры класса
Способность определять элементы программ (классы), которые немедленно используются (посредством наследования), оставаясь неявными, является одним из главных нововведений объектной технологии, непосредственно отвечающему принципу Открыт-Закрыт. В последующих лекциях будут раскрыты все вытекающие из нее следствия.
Альтернативы частичным функциям
Один из технических приемов, используемый в этой лекции, мог вызвать удивление, - применение частичных функций. Он связан с неустранимой проблемой применения в некоторой спецификации не всюду определенных операций. Но являются ли частичные функции лучшим решением этой проблемы?
Конечно, это не единственно возможное решение. Другим способом, который приходит на ум и действительно используется в некоторых работах по АТД, является превращение частичной функции во всюду определенную за счет введения специального значения "ошибка" для случаев применения функции к неподходящим аргументам.
Каждый тип
f: ... Типы входов ... T
определяет, что всякое применение
Хотя этот метод и используется, он приводит к математическим и практическим неудобствам. Проблема в том, что такие специальные значения являются весьма эксцентричными существами, которые могут чрезвычайно осложнить жизнь невинных математических существ.
Предположим, например, что рассматриваются стеки целых чисел - экземпляры типа
[Z1]
n + 1 n
Пусть теперь n будет результатом запроса верхнего элемента пустого стека, т. е. значением выражения
wINTEGER + 1 = wINTEGER.
Вильям Л Саймон , Вильям Саймон , Наталья Владимировна Макеева , Нора Робертс , Юрий Викторович Щербатых
Зарубежная компьютерная, околокомпьютерная литература / ОС и Сети, интернет / Короткие любовные романы / Психология / Прочая справочная литература / Образование и наука / Книги по IT / Словари и Энциклопедии