Класс дерева
Деревом называется иерархическая структура, составленная из узлов с данными. Обычно ее определяют так: "Дерево либо пусто, либо содержит объект, именуемый его корнем, с присоединенным списком деревьев (рекурсивно определяемых) - потомков корневого узла". К этому добавляют определение узла: "Пустое дерево не содержит узлов; узлами непустого дерева являются его корень и по рекурсии узлы потомков". Эти определения, хотя и отражают рекурсивную сущность дерева, не способны показать его внутренней простоты.
Мы же заметим, что между понятиями дерева и узла нет серьезных различий. Узел можно определить как поддерево, корнем которого он является. В итоге приходим к классу
Рис. 15.6. Дерево целых чисел
Вспомним также о понятии списка, чей класс
Рис. 15.7. Представление списка
Эти понятия позволяют прийти к простому определению дерева: дерево (или его узел) есть список, - список его потомков, но является также потенциальным элементом списка, поскольку может представлять поддерево другого дерева.
Определение: дерево
Дерево - это список и элемент списка одновременно.
Это определение еще потребует доработки, однако, уже сейчас позволяет описать класс:
deferred class TREE [G] inherit
LIST [G]
CELL [G]
feature
...
end
От класса
От класса
Этот пример характерен тем, что иллюстрирует преимущества повторного использования при множественном наследовании. Создание специальных компонентов вставки или удаления поддеревьев означало бы повторение того, что уже сделано для списка элементов. Нам же остаются лишь косметические доработки.
Кроме того, следует позаботиться о добавлении в предложение feature специфических компонентов, присущих только деревьям, и компонентов, являющихся результатом взаимных компромиссов, неизбежных при любой свадьбе, и обеспечивающих взаимную гармонию родительских классов. Их текст невелик и займет в классе
Этот процесс подобен процессу, применяемому математиками при комбинировании теорий: топологическое векторное пространство является одновременно топологическим пространством и векторным пространством. Здесь тоже необходимы некоторые связующие аксиомы. |
Составные фигуры
Следующий пример больше чем пример, - он послужит нам образцом проектирования классов в самых различных ситуациях.
Рассмотрим структуру, введенную в предыдущей лекции для изучения наследования и содержащую классы графических фигур:
Рис. 15.8. Элементарные фигуры
Пусть в этой иерархии представлены все нужные нам базовые фигуры. Однако в библиотеку классов хотелось бы включить и не базовые фигуры, имеющие широкое распространение. Конечно, любое изображение каждый раз можно строить из примитивов, но это неудобно. Поэтому мы создадим библиотеку фигур, часть которых будут базовыми, а часть - построена на их основе. Так, из экземпляров базисных классов: отрезка и окружности можно собрать колесо:
Рис. 15.9. Составная фигура
Колесо, в свою очередь, может пригодиться при рисовании велосипеда, и т. д.
Итак, нам необходим универсальный механизм создания новых фигур, построенных на основе существующих, но, будучи построенными, используемыми наравне с базовыми.
Назовем новые фигуры составными (
Для получения эффективного класса
class COMPOSITE_FIGURE inherit
Вильям Л Саймон , Вильям Саймон , Наталья Владимировна Макеева , Нора Робертс , Юрий Викторович Щербатых
Зарубежная компьютерная, околокомпьютерная литература / ОС и Сети, интернет / Короткие любовные романы / Психология / Прочая справочная литература / Образование и наука / Книги по IT / Словари и Энциклопедии